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ABSTRACT 

 

Autonomous robots show inadequate results in dynamic and unstructured environments. 

Integrating a human-operator into a robotic system can help improve performance and reduce 

system complexity. Collaboration between a human-operator and a robot, benefits from both 

human‟s perception skills and the robot‟s accuracy and consistency. Various levels of collaboration 

can be applied; each level differs by the degree of autonomy of the robot. 

This thesis focuses on evaluation of an integrated human-robot system for target recognition 

tasks. The work is based on previous work developed by Bechar (2006). In his work, four 

collaboration levels were designed specifically for target recognition and an objective function was 

developed to quantify the influence of parameters of the robot, human, environment and task, 

through a weighted sum of performance measures. The model developed by Bechar (2006), enables 

to determine the optimal level of collaboration based on these parameters. 

The human reaction time in target recognition is the time required for the observer to decide 

whether an object is target or not. Reaction time influences the operational cost of the system. In 

Bechar‟s work, the reaction time was constant. This thesis introduces further development of the 

objective function; considering the fact that reaction time of the human depends on the signal 

strength of the observed object, which is not constant and equal for all objects. A reaction time 

model, based on Murdock (1985) is incorporated into Bechar‟s model and analyzed. 

The new model is expected to describe actual systems in a better way by adjusting time 

parameters to a specific task. The study evaluates the influence of human‟s reaction time on the 

performance of an integrated human-robot target recognition system. Particularly, the study focuses 

on how reaction time affects the level of human-robot collaboration that results in best performance. 

The thesis presents the mathematical model developed and results of the simulation analysis. 

The analysis reveals new collaboration levels that were derived automatically from the 

defined ones and are preferable when human reaction time cost is high. In these collaboration 

levels, the human concentrates only on part of the objects and ignores others. Therefore, the system 

reduces the total human reaction time cost resulting in better performance. 

The human ignores objects by setting his cutoff point to an extreme value. The analysis shows 

how the system type, the human sensitivity, the probability of an object to be a target, and the time 

cost, all influence the phenomena of extreme cutoff point selection. 

 

 

 



 

When human sensitivity is low, the human badly discriminates between targets and other 

objects. When the system gives high priority for not causing false alarms, the human prefers an 

extreme positive cutoff point, resulting in no objects marked as targets, and no false alarms. For 

systems that give high priority for not missing targets, an extreme negative cutoff point was 

preferred; resulting in all objects marked as targets and no misses. 

The analysis shows that the time costs affect the position of the optimal cutoff point. The 

phenomenon, introduced above, arises for higher human sensitivities as the time cost is higher. 

Furthermore, the analysis shows that collaboration with a human is less profitable in cases when the 

time cost is high.  

An extreme cutoff point position decreases the total operation time cost. In the reaction time 

model, the mean response time reduces as the cutoff point is far from the mean of the distribution; 

therefore, in the sense of time costs, the extreme cutoff point is always preferred. 

The position of the cutoff point influences all other parts of the objective function. An 

extreme positive cutoff point, for example, causes small probabilities of false alarms and hits; and 

causes high probabilities of miss and correct rejections. The overall gains and penalties of these 

outcomes are modified accordingly.  

 

Keywords: Human-robot collaboration, collaboration levels, reaction time, target recognition. 
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1 INTRODUCTION 

Despite intensive R&D efforts in robotics, autonomous robots can still not perform reliably in “real-

world” conditions (Bechar et al., 2009). Current robotic systems are best suited for applications that 

require accuracy and high yield under well defined and known conditions (Bechar, 2006). They 

cannot cope with unexpected situations encountered in unstructured and changing environments. A 

major problem in most robotic systems is target recognition. In detection of natural objects, this is 

especially problematic since the objects have high degrees of variability in shape, texture, color, 

size and position (Bechar, 2006). This as well as the limitations of sensor technologies and the 

changing environmental conditions (e.g., lighting, occlusion) prohibits the use of completely 

autonomous systems in such environments (Dubey & Everett, 1998). Humans on the other hand, 

can easily fit themselves into such changing environments. By taking advantage of the human 

perception skills and the robot's accuracy and consistency, the combined human-robotic system can 

be simplified, resulting in improved performance (Bruemmer et al., 2005). 

This thesis is based on a previous work (Bechar, 2006) which focused on development of an 

objective function for human robot collaborative systems for target recognition task. Bechar (2006) 

developed four levels of collaboration for target recognition: two independent levels, autonomous 

(R) and manual (H), and two levels that define collaboration between the human operator and the 

robot. The first one (HR) is a collaboration level where the robot indicates potential targets and the 

human operator, follows and confirms real targets and adds targets the robot missed. In the second 

collaboration level (HOR), the human supervises the robot. The robot itself marks targets and the 

human operator checks its' marks. The human operator cancels false targets and mark targets that 

the robot missed. In addition, a method to determine the best level of collaboration was developed 

(Bechar, 2006). The best collaboration level is the level that achieved the highest system 

performance. The system objective function enabled to determine the expected value of task 

performance, given the parameters of the system, the task, and the environment. The objective 

function composed of the four penalties or rewards of the recognition process (i.e., hit, correct 

detection, false alarm and miss) and the system operational costs. The operational costs partially 

consist of the cost of time, spent during system operation. The cost of the human decision time, 

which is the time takes the human to decide whether an object is a target or not, is the main part out 

of the total operational costs. 
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The objective function of Bechar‟s model considered the human decision time as a constant. 

However, it is known that reaction time in target recognition should take into account factors as the 

strength of the observed object, which is not constant (Murdock & Dufty, 1972; Pike, 1973; 

Murdock, 1985). This thesis introduces further development of the model by incorporating non-

constant reaction times. The new model, proposed in this research, provides a better description of  

actual systems by adjusting time parameters to a specific task and taking into consideration the fact 

that reaction time of the human depends on the strength of the observed object. Evaluating the best 

collaboration level according to the new model, considers the influence of human reaction time on 

system performance.  

This thesis evaluates the influence of human reaction time on the performance of a 

collaborative target recognition system. Particularly, the study focuses on how reaction time affects 

the recommended level of human-robot collaboration. The research aims to: (1) adjust a reaction 

time model to the objective function of a collaborative target recognition system, and (2) perform a 

thorough numerical analysis of the objective function in order to evaluate the influence of the 

human reaction time.  

The dissertation is organized as follows: chapter 2 presents a literature review on autonomous 

robots, human-robot collaboration, target recognition and reaction time models. The literature 

review also includes description of Bechar's model and signal detection theory. The methodology 

chapter (chapter 3) outlines the research. Chapter 4 presents the development of the reaction time 

model and show how it is incorporated into Bechar's model. Chapters 5 and 6 show the numerical 

and sensitivity analyses of the new model. The thesis concludes in chapter 7, which includes 

research limitations and discussion of future research. 
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2 LITERATURE REVIEW 

The review includes seven main topics: (1) automation, (2) human-robot collaboration, (3) 

collaboration types and levels, (4) collaboration in target recognition task, (5) introduction of a 

collaborative model for target recognition, (6) signal detection theory, and (7) reaction time models. 

2.1 Automation 

"Machines, especially computers, are now capable of carrying out many functions that at 

one time could only be performed by humans" (Parasuraman et al., 2000).  

Parasuraman et al. (2000) defined automation as a device or system that accomplishes 

(partially or fully) a function that was previously carried out (partially or fully) by a human 

operator. These functions are often things that humans do not wish to perform, or cannot perform as 

accurately or reliably as machines. 

A teleoperator is a machine that extends a person's sensing and/or manipulating capability to a 

remote location (Sheridan, 1992). The term Teleoperation refers most commonly to direct and 

continuous human control of the teleoperator (Sheridan, 1992). 

Recently, robots take part of many aspects of our society, from military uses to medicine; 

from entertainment to home and office laborers; for use on land, sea, air, and space (Bruke et al., 

2004). Robot teleoperation, still the primary mode of operation in today's human–robot systems, 

can be highly successful and irreplaceable, but these systems are also very limited and expensive 

(Bruke et al., 2004). 

2.2 Human-robot collaboration 

Autonomous robots are systems that can perform tasks without human intervention. They are 

best suited for applications that require accuracy and high yield under stable conditions, yet they 

lack the capability to respond to unknown, changing and unpredicted events (Bechar, 2006). 

Humans, dissimilarly, can easily fit themselves into changing environment (Bechar, 2006). In 

general, human and robot skills are complementary (Rodriguez & Weisbin, 2003). By taking 

advantage of the human perception skills and the robot's accuracy and consistency, the combined 

human-robotic system can be simplified, resulting in improved performance (Bechar et al., 2009). 

The unstructured nature of the tasks as well as the limitations of the current sensor 

technologies prohibits the use of completely autonomous systems for remote manipulation (Dubey 

& Everett, 1998). Hence, teleoperated systems, in which humans are an integral part of the control, 

are most often used for performing these tasks (Dubey & Everett, 1998). Usage of remote mobile 

robots takes advantages of human intelligence and machine proficiency (Bruemmer et al., 2005). 
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However, many applications still use robots as a passive tool and the cognitive burden of all 

decisions are placed on the human operator. Sometimes it is assumed that autonomy (i.e., full 

independence) is the ultimate goal for remote robotic systems (Bruemmer et al., 2005). Bruemmer 

et al. (2005) suggested that effective teamwork, where the robot is a peer, is an equally profitable 

aim. In their experiments, they tried to provide evidence for a form of collaborative control where 

robots are regarded as peers and effectively used as trusted team members (Bruemmer et al., 2005).  

 

Sheridan (1992) states seven motivations to develop supervisory control: 

 "(1) to achieve the accuracy and reliability of the machine without sacrificing the 

cognitive and adaptability of the human; (2) to make control faster and unconstrained by the 

limited pace of the continuous human sensorimotor capability; (3) to make control easier by 

letting the operator give instructions in terms of objects to be moved and goals to be met, 

rather than instruments to be used and control signals to be sent; (4) to eliminate the demand 

for continuous human attention and reduce the operator's workload; (5) to make control 

possible even where there are time delays in communication between human and teleoperator; 

(6) to provide a "fail-soft" capability when failure in operator's direct control would be proved 

catastrophic; and (7) to save lives and reduce cost by eliminating the need for the operator to 

be present in hazardous environment, and for life support required to send the operator there." 

(Sheridan, 1992) 

 

Figure 1: The notions of trading and sharing control between human and computer. 

L is the load or task, H is the human, and C is the computer (Sheridan, 1992) 

Sheridan (1992) explained the difference between sharing and trading control. Sharing control 

means that the human and the computer control different aspects of the system on the same time. 

When the computer extends human's capabilities or relieves the human by making her job easier, 

they are sharing control (Figure 1). Trading control, on the other hand, means that either the human 

or the computer turns over control to the other. When the computer backs up or replaces the human 

operator, they are trading control (Sheridan, 1992). Both sharing and trading control are relevant in 

human-robot collaboration. 
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A main issue in space exploration is to decide what human or robotic system (or a suitable 

combination of the two) is most appropriate to use in those exploration tasks (Rodriguez and 

Weisbin, 2003). Rodriguez and Weisbin (2003) introduced a method to evaluate systematically the 

relative performance of some optional human-robot systems, in order to decide which type of assets 

to use in a given situation. First, they decompose the space scenario that needs to be analyzed into a 

set of major functional operations. For each of the functional operations, they define a set of 

performance metrics to be used in the evaluation. Then they specify the agents (robot, human or a 

combination) to be evaluated, together with the resources needed for their implementation. The 

performance of each agent is then evaluated for each of the functional operations, and a score, 

which estimates the aptitude of each agent for each operation, is determined. A composite score is 

then computed for each agent and a comparison between systems' performances is done. 

2.3 Collaboration types and levels 

As aforementioned, automation refers to the full or partial replacement of a function 

previously carried out by a human operator (Parasuraman et al., 2000). This means that automation 

can differ from the lowest level of manual performance through some levels of collaboration 

between the human and the robot up to the highest level of full autonomy (Parasuraman et al., 

2000). 

 

Figure 2: Simple four-stage model of human information processing (Parasuraman et al., 2000) 

Parasuraman et al. (2000), in their article: "Types and Levels of Human Interaction with 

Automation", revealed a four-stage model of human information processing (see Figure 2). The first 

stage, Sensory Processing, refers to the acquisition and registration of multiple sources of 

information. The second stage, Perception/Working Memory, involves conscious perception and 

manipulation of processed and retrieved information in working memory. This stage also includes 

cognitive operations, but these operations occur prior to the point of decision. The third stage, 

Decision Making, is where decisions are made based on such cognitive processing. The fourth and 

final stage, Response Selection, involves the implementation of a response or action consistent with 

the chosen decision (Parasuraman et al., 2000). 

One can divide system functions into four classes that match each of the four stages in human 

information processing (Parasuraman et al., 2000): (1) information acquisition, (2) information 

analysis, (3) decision and action selection, and (4) action implementation. Automation can be 

implemented in each of these functions. A particular system can involve automation of all four 
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dimensions at different levels as shown in Figure 3 (Parasuraman et al., 2000). Each of these 

dimensions can be automated in varying levels of automation. The levels of automation of decision-

making, that will be introduced later, can be applied, with some modifications, also to the other 

dimensions.  

 

Figure 3: Levels of automation for independent functions of: information acquisition, information  

analysis, decision selection, and action implementation (Parasuraman et al., 2000) 

 

Sheridan (1978) described ten levels of automation of decision and action selection. Table 1 

shows different levels of automation, with higher levels representing increased autonomy of the 

system. At the low levels, the operator must get involved in order to accomplish an operation. 

Under level 6 or higher, the system will automatically execute its own resolution unless the operator 

intervenes (Parasuraman et al., 2000). 

 

 Table 1: Scale of Levels of Automation of Decision and Control Action (Sheridan, 1978) 
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2.4 Examples of collaboration levels 

Levels of collaboration are sometimes referred to as modes of operation of the given human-

robot system. Following we describe examples of collaboration levels implementations in different 

applications. All of the examples include fully autonomy and fully manually levels, which consist 

of a single collaborator without any cooperation. The collaboration levels differ by nature, scale, 

structure, and number of levels.  

Bechar and Edan (2000) evaluated two collaboration levels for agriculture robot guidance 

through an off-road path. Two different guidance methods were tested: Directional guidance, where 

the gross direction of advance is being marked and Waypoint guidance, where the system draws the 

desired course of advancing along the path. Two collaboration levels were examined for each 

guidance method: HO, where the human-operator marks the desired direction/course solely; and 

HO-Rr, here the human-operator marks the desired direction/course with recommendations from the 

robot (Bechar & Edan, 2000).  

Bruemmer et al. (2005) defined four control modes of a remote mobile robot in an in-door 

search and exploration task. (1) Tele Mode is a fully manually mode of operation, in which the 

operator controls all robot movements. (2) Safe Mode is similar to Tele Mode. However, in Safe 

Mode the robot is equipped with a level of initiative that prevents the operator from colliding with 

obstacles. (3) Shared Mode, the robot can relieve the operator from the burden of direct control, 

using reactive navigation to find a path based on perception of the environment. The robot accepts 

operator intervention and supports dialogue using a finite number of scripted suggestions (e.g., 

“Path blocked! Continue left or right?”), that appear in a text box within the graphical interface. (4) 

Autonomous Mode consists of series of high-level tasks such as patrol, search region or follow path. 

In this mode, the only user intervention occurs on the tasking level; the robot itself manages all 

decision-making and navigation (Bruemmer et al., 2005). 

Bechar (2006) developed four collaboration levels for target recognition: Fully autonomous 

level (R), in which the robot fulfills the task all by itself; and fully manually level (H), where the 

human-operator does not use any help of the robot. Two more levels define collaboration between 

the human operator and the robot. The first one (HR) is a collaboration level where the robot 

indicates potential targets and the human operator at the following stage needs to mark the targets 

he thinks are real and to add marks of targets the robot did not indicate. In the second collaboration 

level (HOR), the human supervises the robot. The robot itself marks targets and the human operator 

checks its' marks. The human operator unmarks targets that are not real and mark targets that the 

robot missed (Bechar, 2006). 
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Hughes and Lewis (2005) designed a remote robotic system for a search and exploration task. 

In order to control the robot, one or two cameras feed the human operator with live video from the 

remote environment. Hughes and Lewis used two different levels of control on the cameras. At the 

first one, Sensor-Driven Orientation, the operator supervises the camera while a guided-orientation 

system recommends it where to look. Whenever the operator wants to, she can take control over the 

camera, overriding system's recommendations. The other level, User-Controlled Orientation, the 

camera is all the time under operator's control. 

Czarnecki and Graves (2000) described a scale of five human-robot interaction levels for a 

telerobotic behavior based system. 

Most of these applications determine the best collaboration level for specific system and 

mission conditions. Experiments were conducted in order to compare performance under different 

levels of collaboration. Generally, the main conclusion was that systems perform better, in different 

aspects, when human and robot collaborate. Moreover, the level of autonomy should not be 

arbitrary and the user should be able to set robot's level of autonomy according to environment or 

task constraints (Steinfeld, 2004). Team members (humans and robots) must recognize changing 

situations and adapt the best collaboration level to ensure that the mission is done successfully 

(Bruke et al., 2004). An expansion of Bechar's research (2006) will follow in the next section. 

2.5 Collaboration in target recognition tasks 

Target recognition is a common and critical element in most robotic systems (Bechar, 2006). 

For example, the detection of parts in assembly lines, the detection of landmarks in autonomous 

navigation, or the detection of fruits for robotic harvesters. Target recognition is a common and 

important topic in many other research areas such as medical and brain research, quality assurance, 

human factors, agriculture and remote sensing (Bechar, 2006). Automatic target recognition in 

agriculture environment is characterized by low detection rates and high false alarm rates due to the 

unstructured nature of both the environment and the objects (Bechar & Edan, 2003). 

Target recognition is a mission in which the system needs to mark objects as targets (Bechar, 

2006). Typical systems for target recognition use a sequence of algorithms that operate in different 

stages in order to achieve recognition (Bhanu et al., 2000). A vision analysis based algorithm is 

used in order to decide whether an object is a target or not (Bulanon et al, 2001). For example, 

Bulanon et al. (2001) made use of color difference of red histogram in order to recognize apple 

fruits in images of CCD camera (Figure 4). Bhanu et al. (2000) went farther and proposed a 

learning-based target recognition system that is capable of automatically adjusting its procedural 

parameters in order to achieve adaptive target recognition process. 
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Figure 4: Vision analysis for apple fruit detection (Bulanon et al, 2001)  

(a) CCD image, (b) segmentation of color difference of red, (c) color difference of red histogram 

Bechar, in his Ph.D. thesis (2006), examined human-robot collaboration for target 

recognition. Four collaboration levels were defined and a method to determine the best 

collaboration level was evaluated. To measure system performance under different collaboration 

levels an objective function has been developed (Bechar, 2006). The objective function includes 

five parts: hit (correct detection), false alarm, miss, correct rejection, and operational cost. Each of 

the first four parts represents penalties or rewards of the recognition process. For instance, when a 

correct detection occurs, meaning a real target was detected by the system, a reward is summed to 

the objective function. Likewise, a penalty is taken into account when a target is missed or when the 

system makes false alarm, marking a non-target as a target (Bechar, 2006).  

Bechar (2006) found that the H collaboration level is never the best collaboration level 

probably due to its high operational cost and low hit rate relative to the other collaboration levels. 

Thus, collaboration of human and robot in target recognition tasks will always improve the optimal 

performance. The combination of both human and robot in the HOR collaboration level increases 

the system sensitivity in most cases and increases the probability of a hit while reducing the 

probability of false alarms. In addition, findings indicated that when robot sensitivities are higher 

than human sensitivities the best collaboration level is R (Bechar, 2006).  

Oren, in his B.Sc final project (2007), continued Bechar's work and performed sensitivity 

analyses of the objective function in order to understand how changes in different parameters 

(human, robot, task, and environment) influence performance of the integrated human-robot system. 

Oren et al. (2008) found that an increase in human and/or robot sensitivity causes an increase 

in the objective function score and in fact, increases system's performance. Superior sensitivity 

means better capability to discriminate between a signal (target) and a noise (no target) and 

therefore, more hits and fewer false alarms occur (Oren et al., 2008). In addition, a sensitivity 

analysis of the thresholds (see interpretation in Signal Detection Theory subchapter, ‎2.7) exposed 

that in some cases, a small deviation from the optimal value causes shifts in the best collaboration 

level. 
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2.6 Collaborative model for target recognition (Bechar, 2006) 

This chapter details the objective function of the collaborative model developed by Bechar 

(2006) for target recognition tasks.  

The objective function describes the expected value of system performance, given the 

properties of the environment and the system. The goal is to maximize the objective function. The 

value of the objective function can be translated into a monetary value. The objective function 

composed of the four responses of the target detection process and the system operational costs: 

Is Hs Ms FAs CRs TsV V V V V V      

Where HsV  is the gain for target detections (hit), FAsV  is the penalty for false alarms (FA), MsV  

is the system penalty for missing targets (miss), CRsV  is the gain for correct rejections (CR), and TsV  

is the system operation cost. All gain, penalty and cost values have the same units, which enable us 

to add them together to a single value, expressed in the objective function.  

The gain and penalty functions are: 

Hs S Hs HV N P P V     

Ms S Ms MV N P P V     

FAs S FAs FAV N (1 P ) P V      

CRs S CRs CRV N (1 P ) P V      

Where, N  is the number of objects in the observed image and SP  is the probability of an 

object becoming a target. The third parameter in the equations, XsP , is the system probability for one 

of the outcomes: hit, miss, false alarm or correct rejection ( X  can be H , M , FA, CR ). The fourth 

parameter, XV , is the system gain or penalty from the expected outcome. 
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The system‟s probability of a certain outcome is influenced from the serial structure of the 

model and is composed of the robot and the human probabilities: 

Hs Hr Hrh Hr Hh(1 )P P P P P      

Ms Mr Mh Mr Mrh(1 )P P P P P      

FAs FAr FArh FAr FAh(1 )P P P P P      

CRs CRr CRh CRr CRrh(1 )P P P P P      

Where, 

(1) HrP  is the robot probability of a hit, 

(2) HrhP  is the human probability of confirming a robot hit, 

(3) HhP  is the human probability of detecting a target that the robot did not detect, 

(4) MrP  is the robot miss probability, 

(5) MrhP  is the human probability of un-confirming a robot hit, 

(6) MhP  is the human probability of missing a target the robot missed, 

(7) FArP  is the robot false alarm probability, 

(8) FArhP  is the human probability of not correcting a robot false alarm, 

(9) FAhP  is the human probability of a false alarm on targets the robot correctly rejected, 

(10) CRrP  is the robot probability of a correct rejection, 

(11) CRrhP  is the human probability of correcting a robot false alarm, and 

(12) CRhP is the human probability of a correct rejection on targets the robot correctly rejected. 

The sum of hit and miss probabilities (of the same type) equals one, so does the sum of false 

alarm and correct rejection probabilities. 

 

The system‟s operation cost is: 

Ts S t S Hs S FAs CV t V [ N P P N (1 P ) P ] V           

Where, St  is the time required by the system to perform a task, tV is the cost of one time unit, 

and CV  is the operation cost of one object recognition (hit or false alarm).  
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The system time consists of the time it takes the human to decide whether to confirm or reject 

robot detections; and the time it takes the human to decide whether objects not detected by the robot 

are targets or not. The robot operation time, rt , of processing the images and performing hits or 

false alarms, is also included.  

S S Hr Hrh Hrh S Hr Hh Hh

S Hr Hrh Mrh S Hr Hh Mh

S FAr FArh FArh S FAr FAh FAh

S FAr FArh CRrh S FAr

t N P P P t N P (1 P ) P t

N P P (1 P ) t N P (1 P ) (1 P ) t

N (1 P ) P P t N (1 P ) (1 P ) P t

N (1 P ) P (1 P ) t N (1 P ) (1 P ) (1 P

           

             

             

              FAh CRh r) t N t  

 

Where,  

(1) Hrht  is the human time required to confirm a robot hit, 

(2) Hht  is the human time required to hit a target that the robot did not hit, 

(3) Mrht  is the human time lost when a robot hit is missed, 

(4) Mht  is the human time invested when missing a target that the robot did not hit, 

(5) FArht  is the human time needed not to correct a robot false alarm, 

(6) FAht  is the human false alarm time, 

(7) CRrht  is the human time to correctly reject a robot false alarm, 

(8) CRht  is the human correct rejection time, and (9) rt  is the robot operation time. 

Explicit expression of the system objective function, IsV , suitable for all collaboration levels, is: 

Is S Hr Hrh H C Hrh t Hr Hh H C Hh t

S Hr Hrh M Mrh t Hr Hh M Mh t

S FAr FArh FA C FArh t FAr FAh FA C FAh t

V N P [ P P (V V t V ) (1 P ) P (V V t V )]

N P [ P (1 P ) (V t V ) (1 P ) (1 P ) (V t V )]

N (1 P ) [ P P (V V t V ) (1 P ) P (V V t V )]

N

               

               

                

  S FAr FArh CR CRrh t FAr FAh CR CRh t r t(1 P ) [ P (1 P ) (V t V ) (1 P ) (1 P ) (V t V )] N t V                

For the H collaboration level, the system objective function will be a degenerate form of the full 

objective function, and will not include the robot variables: 

Is S Hh H C Hh t Hh M Mh t

S FAh FA C FAh t FAh CR CRh t

V N P [ P (V V t V ) (1 P ) (V t V )]

N (1 P ) [ P (V V t V ) (1 P ) (V t V )]

            

            
 

In the R collaboration level, the system objective function will be a degenerate form of the full 

objective function, and will not include the human variables: 

Is S Hr H C Hr M

S FAr FA C FAr CR r t

V N P [ P (V V ) (1 P ) V ]

N (1 P ) [ P (V V ) (1 P ) V ] N t V

        

           
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2.7 Signal detection theory 

This section gives a tutorial for the signal detection theory. 

"Reading in a coffee shop, you see someone who looks familiar. Have you met him 

before? Should you go and talk to him at the risk of embarrassment when you realize he is a 

stranger? On the other hand, should you pretend to ignore him at the risk of offending your 

friend? Both paths of action have potential costs and benefits and the correct decision is not 

clear. Furthermore, the decision you make might be biased by your own previous experience. 

For example, if in the past you accidentally waved 'hello' to a strange, then you might be less 

likely to wave to the person who looks familiar" (http://wise.cgu.edu). 

This is an example of detection process. A common dimension of these situations is that there 

is doubt whether a signal is present or not (Sheridan, 1992). Signal detection theory provides a 

general framework to describe and study decisions that are made in ambiguous situations (Wickens, 

2002). This decision theory tries to estimate decision-making processes for binary categorization 

decisions, i.e., Yes/No or True/False. It is specifically concerned with how these choices are, or 

should be made under uncertain conditions (Brown & Davis, 2006). 

Four potential types of outcomes are possible in a binary detection process (see Figure 5). An 

outcome is dependent on the decision-maker decision and on the actual circumstances, i.e., was 

there a signal or not. Decisions rely on a detector, which must notice a signal (S) when it occurs 

without being diverted by a noise (N). When a detector indicates a signal, only one of the two must 

be true: signal is present (hit) or is absent (false alarm, FA). When a detector does not indicate a 

signal, either it missed (miss) the signal, or there is no signal (correct rejection, CR) (Wickens, 

2002). These responses are also often called: correct positive (CP), incorrect positive (IP), incorrect 

negative (IN), and correct negative (CN); or true positive (TP, TT), false positive (FP, FT), false 

negative (FN, FF), and true negative (TN, TF), respectively (Brown & Davis, 2006). 

 

Figure 5: Four potential outcomes of the detection process 

In target recognition, the recognition system aims to detect targets. The system gets a set of 

objects and needs to mark the objects it thinks are targets (Bechar, 2006). The outcomes of the 

recognition process are specified as follows. Hit - when the system marks a real target; Miss - when 



14 

the system misses a target; False Alarm - when the system marks a non-target as a target; and 

Correct Rejection - when a non-target is not marked (Bechar, 2006). 

The decision-maker needs to detect signals while background noise exists all the time. A 

continuous variable X (e.g., temperature, concentration, density, probability) represents the stimulus 

of the process (see Figure 6). The specific value of X can be either signal or noise. Two 

distributions, one of noise-only (N) and one of signal-plus-noise (S+N), represent the probability of 

such a stimulus to be a signal (Bechar, 2006). 

 

Figure 6: An example of binary decision analyzed with SDT (Bechar, 2006) 

The decision whether a stimulus is a signal or not, leans on a criterion value of X (denoted as 

x), called also a cutoff point (Cohen & Ferrell, 1969) or a threshold (Brown & Davis, 2006). If the 

detector notices a stimulus higher than the criterion, the decision will be that a signal is in presence, 

otherwise, there is no signal. When a signal is present, the detector can either detect it or not, 

resulting in a sum of probabilities of hit and miss equaling one (see Figure 7). The same rule applies 

to the sum of probabilities of false alarm and correct rejection when a signal is absent (Bechar, 

2006). 

 

Figure 7: Outcomes probabilities when a signal is absent (a) or is present (b) 

The distance between the means of the two distributions (denoted as 'd  in Figure 6) defines 

the detector's ability to discriminate between a signal and a noise. The discrimination ability 

influenced both by the capability of the measured variable to distinguish between signal and noise 

(Brown & Davis, 2006), and by the observer's sensitivity (Bechar, 2006). When ' 0d  , the two 
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distributions completely overlap and it is impossible to distinguish between them. As 'd  increases, 

it becomes easier to distinguish between signal and noise (Bechar, 2006). 

The Receiver Operating Characteristic (ROC) curve was introduced in World War II for 

military radar operations as a means to characterize the operators' ability to identify correctly 

friendly or hostile aircraft based on a radar signal (Brown & Davis, 2006; http://wise.cgu.edu). A 

cross plot of hit and false alarm rates can be generated by moving the cutoff point over the range of 

X (see different it  in Figure 8). The curve produced is the ROC curve.  

 

Figure 8: Generation of the ROC curve by evaluating hit and false alarm rates  

at various decision thresholds on x (Brown & Davis, 2006)  

The curve always passes through points (1,1) and (0,0). When the criterion is positioned at t1 

(Figure 8), the detector considers all stimulus as signals, therefore, hit and false alarm rates equal 

one. On the other hand, when positioned in t5, no stimulus would be considered signal and the rates 

equals zero (Brown & Davis, 2006). Other properties of the curve will be discussed later. 

Common measurements of goodness of the decision process are the classification and 

likelihood rates (Brown & Davis, 2006). Classification rate is defined as the proportion of correct 

decisions (hit and correct rejection) to total decisions. The performance of a decision-maker in a 

given set of circumstances is fully described by the frequencies of the various possible outcomes 

(Cohen & Ferrell, 1969). Therefore, the likelihood ratio (denoted as β in Figure 7), which is the 

proportion of hit rate to false alarm rate at the cutoff point, is another way to measure performance 

(Bechar, 2006). Good performance achieves high hit rate and low false alarm rate. Hence high 

likelihood ratio suits system that performs well (Brown & Davis, 2006). An advantage of likelihood 

ratios is that they do not depend on the signal rate (Brown & Davis, 2006).  

With the purpose of achieving the highest likelihood rate, one would like to operate at the 

upper left corner of Figure 8 (indicated by a star in the figure), but cannot because of the overlap of 

the two distributions (Sheridan, 1992). It is possible that hit rate equals one while false alarm rate 

equals zero only when the two distributions do not overlap (see example, Figure 10) and 'd  

http://wise.cgu.edu/
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(Sheridan, 1992). In order to get best performances under given distributions of noise and signal, 

there is a need to find criterion value x adjusted to the optimal likelihood ratio β. In applying this 

theory it is of interest to see if human decision makers are optimal and select x , or if they 

consistently are biased toward lower left (risk-averse behavior) or the upper right (risk-prone 

behavior) corners (Sheridan, 1992). 

The next section illustrates some interesting situations that help understand the theory 

introduced above. The following figures were produced using a web applet that demonstrates ROC 

curves (http://wise.cgu.edu). The two distributions of N and S+N are shown in the left graph 

(Figure 9). The right distribution of signal-plus-noise can be moved horizontally by dragging 'd . 

Likewise, the criterion value can be modified. The right graph is the ROC curve which is generated 

automatically corresponding to chosen 'd  and criterion. Another way to produce the curve is to 

determine hit and false alarm rates at the lower part of the applet. Doing so, both graphs will change 

automatically to fit the input data. 

 

Figure 9: An example of ROC curve applet (http://wise.cgu.edu) 

As shown in Figure 9 one distribution is almost totally overlapping the other. Compatibly,
 

'd  is small. In this situation, the observer's sensitivity is low and only a small hit rate is possible. 

When the sensitivity is higher (Figure 10), the criterion efficiently discriminates between signal and 

noise, high hit rate and low false alarm rate are achieved and the ROC curve passes close to the 

upper left corner of the graph. 

 

Figure 10: An example of high sensitivity of the observer (http://wise.cgu.edu) 

http://wise.cgu.edu/
http://wise.cgu.edu/
http://wise.cgu.edu/
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Figure 11 illustrates different locations of the criterion value. Actually, the ROC curve is a 

cross plot of false alarm and hit rates. The dot on the curve is moving respectively with the 

criterion's movement. Hit and false alarm rates monotonically increase as the criterion moves from 

right to left and hit rate is always greater than false alarm rate (Brown & Davis, 2006). The goal is 

to find the criterion value that gives the highest proportion of hit rate to false alarm rate, the optimal 

likelihood ratio. 

 

Figure 11: Different criterion values on the same ROC curve (http://wise.cgu.edu): 2.04 (a), 0.82 (b), -0.36 (c). 

 

http://wise.cgu.edu/


18 



19 

2.8 Reaction time models 

Signal detection theory, which was introduced above, provides a general framework to 

describe decisions and how they should be made under uncertain conditions (Brown & Davis, 

2006). Signal detection theory models provide an account of accuracy only, and are not concerned 

with the time it takes the observer to make the decision
1
 (Ratcliff & Smith, 2004).  

“Reaction time, that is the time from the onset of a stimulus or signal to the initiation of 

response, has been recognized as a potentially powerful means of relating mental events to 

physical measures. ... More recent developments have enhanced the value of reaction time as a 

measure rather than diminished it (Welford, 1980)”. 

The relation between response time and accuracy is not constant; it varies according to 

whether speed or accuracy of performance is emphasized and according to whether one response or 

another is more probable or weighted more heavily (Ratcliff & Rouder, 1998). Therefore, previous 

models have dealt with only one measure, accuracy or response time (Ratcliff & Rouder, 1998).  

Various models were proposed to account for reaction time and accuracy. Ratcliff and 

Rounder (1998) introduced the diffusion model which is a sequential-sampling model and can 

explain the relationship between correct and error responses while at the same time fitting all the 

other response time and response probability aspects of the data. Sequential sampling models are 

unique in providing a way to understand both the speed and accuracy of performance within a 

common theoretical framework (Ratcliff & Smith, 2004). 

Ratcliff, Mckoon and Zandt (1999) also claim that the main difficulty in recent modeling is 

that two dependent variables, reaction time and the probability of responses, must to be modeled in 

the same integrated framework. They introduced connectionist models that explain how cognitive 

tasks are learned. Learning is the result of many individual trials with stimuli, each trial with 

feedback about whether the model's response was correct or not (Ratcliff et al., 1999).  

Pike (1973) suggested that latency in response is some inverse function of distance from the 

criteria, and that latency decreases with the distance. According to Pike (1973), successful 

description of response latency is necessary for verification of the detection model. 

                                                 
1
 Response Time, Response Latency and Decision Time, refer to the common term Reaction Time, which is used to 

describe the time it takes the observers to decide about an observed object.  
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Murdock (1985) analyzed the strength-latency relationship and introduced a generic reaction 

time model based on the distance-from-criteria of the observed object. He suggested that an 

exponential function is the most reasonable to use in order to transfer the object‟s strength, i.e., 

distance-from-criteria, into latency (Figure 12). Exponential functions can describe symmetrical 

descendent of latency on both sides of the yes/no criterion (Murdock, 1985). 

 

 

 

 

Figure 12: Signal (x) is normally distributed with criterion Xco. Exponential  

transfer function maps signal strength into latency (t), and the resulting latency  

distribution f(t) is shown by the dots (Murdock, 1985). 
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3 METHODOLOGY 

3.1 Overview 

This thesis continues a previous work of Bechar (2006) which focused on developing a 

human-robot collaboration model for target recognition task. The objective function of the model 

describes the system score for a given collaboration level and determines the best collaboration 

level for a given set of parameters. This thesis expands the objective function of the model by 

incorporating a function for human reaction time instead of a constant value. In this thesis, we 

check the influence of the reaction time on the objective function score and the best collaboration 

level.  

A reaction time model is developed and integrated into the collaboration model. Numerical 

and sensitivity analysis of the new model is conducted using simulated data.  

3.2 Reaction time model development 

The objective function of the model developed by Bechar (2006), takes into account the costs 

related to the time it takes a human-robot system to perform a target detection task. Implementing a 

detection procedure by the human consist of two stages. First, the human must decide whether an 

object is target or not. The action on the second stage depends on the human decision and on the 

collaboration level as follows. In some cases, the human needs to make a motoric action in order to 

mark or unmark an object (e.g., confirming a robot recommendation in the HR collaboration level, 

or canceling a wrong robot's mark in the HOR collaboration level). In other cases, the human does 

not have to perform a motoric action (i.e., when the robot's recommendation is not a real target in 

the HR collaboration level, or when the robot decided correct in the HOR collaboration level). The 

time the first stage takes is the reaction time of the human. 

Previous work (Bechar, 2006) considered a constant value for the reaction time. This research 

introduces further development of the model taking into consideration the fact that the reaction time 

of the human depends on the strength of the observed object (i.e., the distance of the observed 

object from the cutoff point). In this research, we incorporate a reaction time model, based on 

Murdock (1985), into Bechar‟s model. 

Furthermore, a mathematical development of a mean distance model is introduced. The model 

is based on the signal detection theory model, and calculates the mean distance between the cutoff 

point and objects of the same category (e.g., mean distance of all objects that were 'missed'). 
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3.3 Performance measures 

This research uses the nine performance measures defined by Bechar (2006). Eight 

performance measures represent the target identification possible outcomes. Four of them stand for 

objects the robot marked as targets (i.e., hit, miss, false alarm and correct rejection) and the other 

four stands for objects the robot did not mark. The ninth performance measure is the time required 

for the human-robot integrated system to fulfill the task. The system objective function combines all 

performance measures into a single parameter. 

3.4 Numerical analysis 

A numerical analysis is implemented on a personal computer with Matlab 7™, and detailed in 

chapter ‎5. The objective is to determine the best collaboration levels for different human, robot, and 

task characteristics, and to examine the influence of the time component. 

The analysis is focused on three different system types. The first two types, introduced by 

Oren (2007), give high emphasis of not causing one of the two possible errors in target recognition: 

missing targets or making false alarms. The third type gives the same importance for all possible 

outcomes. 

3.5 Sensitivity analysis 

The numerical analysis is conducted only for the cases in which the human and the robot 

perform optimally, i.e., optimal cutoff points of the human and the robot. The target detection 

process of the robot is computerized and it is possible to adjust its cutoff point during the task 

according to changes in the environment. On the other hand, an optimal cutoff point of the human is 

less obvious and it is much more difficult to be manipulated. Therefore, the work includes an in-

depth sensitivity analysis of the human and robot cutoff points. The analysis shows how small 

changes in the cutoff point position, influence the objective function score and the best 

collaboration level. 

 



23 

4 MODEL DEVELOPMENT 

In this research, we incorporate a reaction time model, based on Murdock (1985), into 

Bechar‟s collaboration model (2006). According to Murdock (1985), reaction time depends on the 

strength of the observed object. The strength of an object is relative to the distance of the observed 

object‟s value from the criteria. The distance of an object can be measured by the same units of the 

measured object or by standard deviation units. Normalizing the signal and noise distributions helps 

us to describe the problem in standard deviation units. It benefits in generalizing the problem rather 

than using the actual units that fit only to a specific case. The cutoff point gets a different 

interpretation for each normalized distribution. We denote the cutoff points as Sz and Nz  for the 

signal and the noise distributions, respectively. 

;co S co N
S N

S N

x x
z z

 

 

 
   

A short review of the Normal and the Standard Normal distributions, as well as definitions of 

signal and noise distributions is included in Appendix A.  

For a matter of simplicity, all equations of the model will be defined first as functions of the 

parameters Sz and Nz , and later on, for the numerical analysis, they will be expressed by the 

likelihood ratio, β, between the signal and noise density functions in the cutoff point, cox , and the 

distance between the means of the signal and noise distributions, d ' . See chapter ‎2.6 for details. All 

expressions are included in Appendix B. 

In this section, we introduce a development of a mean distance of all objects of the same 

category (miss, hit, correct rejection, and false alarm). Then, we formulate the reaction time model 

and incorporate it into the human-robot collaboration model. 

4.1 Mean distance model 

4.1.1 Mean x-values and distances in a normal distribution 

In the recognition process, the system marks an object as a target if the object‟s value is 

higher than the cutoff point value (denoted as cox  in Figure 13). We use the term „Positive 

Response‟ to describe objects that the system marks. Positive response can be either a hit, if the 

object is a target; or a false alarm if it is not. The term „Negative Response‟ describes objects with a 

value lower than the cutoff point value, which the system does not mark as targets. A negative 

response can be either a miss, if the object is a target; or a correct rejection if it is not. The mean x-

value of all negative responses is denoted as  , and the mean x-value of all positive responses is 

denoted as  .  
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Suppose X  is normally distributed with a mean of   and a variance of 2 . In order to find 

the mean x-value, one must calculate the weighted average of all x-values of the same response, 

where the weight is the frequency of x. The mean x-value depends on the cutoff point value, cox . 

 

Figure 13: Mean x-values and distances in normal distribution 

The mean x-value equations for negative (  ) and positive ( ) responses are: 
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From the equations, it is obvious that   is lower and   is higher than the mean of the 

distribution , also supported by Figure 13. Fully detailed development of the equations is included 

in subchapters ‎4.1.2 and ‎4.1.3. Validation of the equations is presented in Appendix C. 
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The distance of an object from the cutoff point is the absolute difference cox x . We use the 

mean x-values to find the mean distances of negative and positive responses (denoted as ,d d   

respectively in Figure 13). By definition and as shown in Figure 13, cox    . For that reason, 

we define the distances as a difference between the cutoff point and the appropriate mean x-value 

where both distances get positive values: ,( ) ( )co coco co
d x d xx x         

The mean distance equations for negative and positive responses are:  
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In order to describe the problem by standard deviation units rather than by actual units, which 

suit just a specific case, we define normalized distances based on the previous defined distances. 

We divide each distance by the standard deviation . 

The mean normalized distance equations for negative and positive responses are: 
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If we use the equations of the mean distance for standard normal distribution ( 0, 1   ) 

with the appropriate cutoff point, coZ , we get the same equations of the normalized distance.  
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To simplify the equations, we use the following symmetric rules of the standard normal 

distribution: 
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We define the function ( )z : 
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Due to the symmetric rules, the function holds: 
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We use ( )z to define again the normalized distances as: 
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4.1.2 Mathematical development of Mean x-value of negative responses  

In order to find the mean x-value, one must calculate the weighted average of all x-values of 

the same response, where the weight is the frequency of x. 
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4.1.3 Mathematical development of Mean x-value of positive responses  

In order to find the mean x-value, one must calculate the weighted average of all x-values of 

the same response, where the weight is the frequency of x. 
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4.1.4 Mean x-values and distances for signal and noise distributions 

The equations that were developed for the normal distribution are adjusted to the signal and 

noise distributions. The means and standard deviations of the signal and noise distributions are 

respectively ,S S   and ,N N  . Short reviews of Normal and Standard Normal distributions, as 

well as definitions of signal and noise distributions are included in Appendix A. 

 

Figure 14: Illustration of mean x-values and mean distances 

The mean x-values and the mean distances are denoted as: 

M  - Mean x-value of undetected signals (miss) 

H  - Mean x-value of detected signals (hit) 

CR  - Mean x-value of ignored noises (correct rejection) 

FA  - Mean x-value of mistakenly detected noises (false alarm) 

Md
 - Distance from the cutoff point to mean x-value of undetected signals (miss) 

Hd
 - Distance from the cutoff point to mean x-value of detected signals (hit) 

CRd
 - Distance from the cutoff point to mean x-value of ignored noises (correct rejection) 

FAd
 - Distance from the cutoff to mean x-value of mistakenly detected noises (false alarm) 

Hit and miss are the possible outcomes of observing an object from the signal distribution 

(i.e., the object is a target). False alarm and correct rejection are the possible outcomes of observing 

an object from the noise distribution (i.e., the object is not a target). Hits and false alarms are 

positive responses; misses and correct rejections are negative responses.  
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In order to define equations for mean x-values, mean distances and normalized mean 

distances of all four possible outcomes (miss, hit, correct rejection and false alarm), we used the 

appropriate equations (for positive or negative responses) and parameters (mean and standard 

deviation of signal or noise distributions): 
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4.2 Reaction time model 

Murdock (1985) suggests an exponential function to transfer the object‟s strength, i.e., 

distance-from-criteria, into latency. An exponential function can describe symmetrical descendent 

of latency on both sides of the yes/no criterion (Murdock, 1985).  

For negative responses, the distance and the reaction time functions are: 
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For positive responses, the distance and the reaction time functions are: 
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Both functions are presented in Figure 15 and can be conjoined: 
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 Figure 15: Reaction time function 

In order to fit these functions to real data, the parameters A and B must be adjusted. Different 

parameters values lead to different reaction time functions. One can define different values for 

negative and positive responses. 



34 

 

Suppose X  is normally distributed with a mean of   and a variance of 2  

2( , )X Normal   . In order to find the mean reaction time, one must calculate weighted average 

of all reaction times (results from x-values) of the same response. The weights are the frequencies 

of x. The mean reaction time depends on the cutoff point value and denoted as ( ), ( )co coT x T x   for 

negative and positive responses, respectively. 

 

The mean reaction time equations for negative and positive responses are (Murdock, 1985): 
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A fully detailed development of the equations is included in Appendix D. 

 

When 1  , the equations are: 
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The distance functions and the reaction time functions both depend on the value of the cutoff 

point cox . In our collaborative system, the robot observes the objects first followed by the human 

operator. Accordingly, the human decides about two different types of objects: objects that the robot 

already marked as targets; and objects the robot did not mark (Figure 16). The human uses two 

different cutoff points, for the two types of objects. Therefore, two different reaction time functions 

must be implemented. 

 

Figure 16: Reaction times flow chart 

 

The means of reaction time are denoted as: 

MT  - Mean reaction time of undetected signals (miss) 

HT  - Mean reaction time of detected signals (hit) 

CRT  - Mean reaction time of ignored noises (correct rejection) 

FAT  - Mean reaction time of mistakenly detected noises (false alarm) 

 

Same denotations with the index rh  and h  (for instance, ,CRh HrhT T  etc.), will represent 

reaction times for objects the robot marked as targets and for those it did not, respectively (see 

human decisions in Figure 16). 
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The equations that were developed for the normal distribution are adjusted to the signal and 

noise distributions. The means and standard deviations of the signal and noise distributions are 

respectively ,S S   and ,N N  . We used the appropriate equations (for positive or negative 

responses) and parameters (mean and standard deviation of signal or noise distributions) to define 

equations for mean reaction time of all four possible outcomes (miss, hit, correct rejection and false 

alarm): 
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When 1S N   , the equations are: 
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4.3 Collaboration model 

The basis of the expanded model developed in this thesis are the four collaboration levels 

between a human operator and a robot (see subchapter ‎0), and the objective function that describes 

the expected value of system performance (see subchapter ‎2.6), as developed by Bechar (2006). 

 The objective function of the model as described by Bechar (2006) is: 

Is S Hr Hrh H C Hrh t Hr Hh H C Hh t

S Hr Hrh M Mrh t Hr Hh M Mh t

S FAr FArh FA C FArh t FAr FAh FA C FAh t

V N P [ P P (V V t V ) (1 P ) P (V V t V )]

N P [ P (1 P ) (V t V ) (1 P ) (1 P ) (V t V )]

N (1 P ) [ P P (V V t V ) (1 P ) P (V V t V )]

N

               

               

                

  S FAr FArh CR CRrh t FAr FAh CR CRh t r t(1 P ) [ P (1 P ) (V t V ) (1 P ) (1 P ) (V t V )] t V               

 

Each of the human time variables (denoted as Xrht or Xht ) represents a superposition of a 

decision time and a motoric time (denoted as Mt ), in accordance with the collaboration level. The 

decision times, previously considered as constants, are replaced with the mean reaction times 

functions introduced in the previous page. 

When the system operates at the R collaboration level, the robot fulfills the task all by itself 

and all human time variables equal zero (there is no human intervening). 

In the H collaboration level, the human does not use robot‟s help and the time variables are: 

Mh Mh

Hh Hh M

CRh CRh

FAh FAh M

t T

t T t

t T

t T t



 



 

 

In the HR collaboration level, the robot recommends the human by indicating potential 

targets. Then, the human confirms targets he thinks are real and marks extra targets the robot did 

not indicate. The human does a motoric action (marking) if he thinks the robot recommended well. 

The time variables are: 
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In the HOR collaboration level, the human supervises the robot. The robot marks targets and 

the human checks those marks. The human unmarks targets that are not real and marks extra targets 

that the robot missed. In this case, the human does a motoric action (unmarking) only if he thinks 

the robot made a mistake. The time variables are: 

Mh Mh

Hh Hh M

CRh CRh

FAh FAh M
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Hrh Hrh

CRrh CRrh M
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
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

 

 

The (motoric) time it takes to physically mark or unmark an object depends on the system 

interface and the environment conditions. Therefore, it should not vary between one object to 

another and it is considered as constant.  
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5 NUMERICAL ANALYSIS  

A numerical analysis of the model was conducted using MatLab 7.1 (Appendix G details the 

script code). The optimal cutoff points for the human and the robot were determined by numerical 

computation. At the first stage, the objective function was calculated for a range of possible cutoff 

points. Then, the cutoff points that yielded the highest objective function score were determined as 

optimal cutoff points. The analysis of the model was performed for systems that work at the optimal 

cutoff points. The objective function score was calculated for each possible combination of 

parameters and variables, for each collaboration level. The best collaboration level is the level that 

yields the highest objective function score for a given set of parameters‟ value. 

5.1 Model parameters 

The objective function of the model consists of groups of parameters that describe the task, 

the environment and the observers. Table 3 introduces the parameters and their values. 

5.1.1 Task types and parameters 

In some systems, as mines detection or medical examinations, not to miss a target is much 

more important than the cost of making false alarms. In other systems, false alarms have high cost 

and the system accept to hit fewer targets in order to cause fewer false alarms. The independent 

parameters of the task were determined to describe different types of tasks and systems. Raising the 

gain from a hit, for example, induces the observer to make more hits at the expense of more false 

alarms. The value of costs can be easily changed into any monetary values. 

Analysis was focused on three types of systems: Type I system gives high priority for not 

causing errors of the first type, i.e., detecting a target when a target does not exist (false alarm); 

Type II system gives high priority for not causing errors of the second type, i.e., missing a target. 

These two types were introduced by Oren et al. (2008). The different types of systems are 

characterized by the gains and penalties for each outcome ( H M FA CRV ,V , V ,V ). For example, a high 

penalty for false alarms, relatively to the other values, reduces the false alarm ratio. Similarly, 

relatively high gain for hits reduces the cases of missing a target. System of Type III does not prefer 

one type of error on another; therefore the values for all four possible outcomes are the same 

( H M FA CRV V V V    ).Table 2 details the values for each type of system.  

The time cost ( TV ) is the cost of one time unit of system operation. It includes the cost of the 

human operator and the robot. In order to analyze the influence of time cost regardless of the system 

type, it was set relatively to the gain for a hit ( T H T H2V V V V  ). The ratio between the time cost and 

the gain for a hit, T H2V V , was set to the values: -80, -40, -20 (hour
-1

). For example, when HV  equals 
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5 points, 
TV  obtained the values: -400, -200, -100 points for an hour. The operational cost ( CV ) is 

the cost of the action conducted when the system detects a target, either if it is a hit or a false alarm. 

For all analyses, this cost was set to 2 points.  

The operational and time costs were arbitrarily predetermined in order to limit its influence on 

the system decisions. The actual value of the gain-penalty-cost weights was less important in the 

analysis than the ratio between all weights, which determine the task nature (e.g., whether it is more 

important to detect melons, to reduce the number of false alarms or to finish the task in minimum 

time). The parameters' values are consistent with the work of Bechar (2006) and Oren (2007) in 

order to enable comparison. 

Table 2: Gains and penalties for different types of systems 

 

5.1.2 Environmental parameters 

The parameters N  and SP  determine the environmental condition. The objective function 

was calculated for 1,000 objects (targets, N ). The target probability ( SP ) represents the fraction of 

targets from all objects. Analysis was conducted for different probability values between 0.1 and 

0.9. The mean of the noise distribution was set to zero. The mean of the signal distribution was a 

positive number, which results from the value of the observer's sensitivity ( d ' ), as can be seen in 

Figure 18. The standard deviation of the distributions assumed to be one and other noise and signal 

distribution should be normalized in order to fit the model. 

5.1.3 Human parameters 

The sensitivity represents the ability of the observer to distinguish between real targets and 

the other objects. The sensitivity of the human ( hd ' ) was varied between 0.5 and 3. 

The human motoric time ( tMotor ) of executing an action (i.e., marking an object as a target 

or unmarking a robot‟s mark) was set to 2 seconds. The decision time was calculated according to 

the mean reaction time model (see chapter ‎4.2). The reaction time model is based on an exponential 

function,
( )

( ) coB x x
t x A e

 
  , that includes two parameters. Parameter A , which represents the 

longest detection time, was set to 2, 5 or 10 seconds. Parameter B was set to 0, 0.5, 1, 1.5 or 2. 
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These values represent variety of possible exponential functions (see Figure 23). When B  receives 

a zero value, the mean time is A .  

5.1.4 Robot parameters 

The sensitivity of the robot ( rd ' ) was varied, same as human sensitivity, between 0.5 and 3. 

The robot decision time ( rt ) is negligible relatively to the other times and was set to 0.01 seconds 

on average for one object. 

Table 3: Model parameters‟ values 

 

5.2 Graph generator 

The data included three types of systems. A record was saved for every combination of values 

of the six parameters that were not constant (see Table 3). To analyze the influence of parameters 

on different components of the objective function, a graph generator was developed in MatLab 

(Appendix G). The application that was developed, allows to select the system type, two parameters 

(X, Y) and a function (one of the components of the overall objective function), and spreads sub-

graphs for every value of third parameter. The remained three more parameters are set manually 

into one of their possible values. This graph generator enabled an easy comprehensive data analysis. 

Figure 17 illustrates an example of graph selection. The example describes type II system and 

the function that is shown is the optimal objective function (opt_VIs). The sensitivities of the 

human ( hd ' ) and the robot ( rd ' ) are varied along X and Y axes. A sub-graph is shown for every 

value of the target probability ( SP ). The other three parameters ( 2B, A, vT vH ) are set manually.  
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Figure 17: Graph generator application.  

The user can choose a system type (a), an objective function (b), two parameters for X and Y axes  

and a third parameter for the sub graphs (c), and set manually the values of the three other parameters (d). 

(a
) 

 

 (
b
) 

(d
) 

(c
) 
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5.3 Cutoff point analysis 

When the sensitivity of the human operator is high, the human operator can distinguish 

between targets. The optimal cutoff point is between the means of the noise and signal distribution 

(Figure 18, a). When the sensitivity is low, the ability to distinguish reduces and it becomes more 

effective not to examine the objects and decide the same for all of them. The optimal cutoff point, 

therefore, goes to the extreme. When the system gives high priority to not causing false alarms 

(Type I), the cutoff point will be set to infinity, and none of the objects will be marked as targets 

(Figure 18, b). When there is high priority of not missing a target (Type II), the cutoff point will be 

set to minus infinity.  

 

Figure 18: A cutoff point between the distributions‟ means when the sensetivity 

 is high (a) and extreme cutoff point selection when sensitivity is low (b). 

This influence finds expression in the analysis, regardless of the response time costs of the 

observer. The time costs amplify this phenomenon. The mean response time reduces as the cutoff 

point is far from the mean of the distribution; therefore, in the sense of time costs, extreme
2
 cutoff 

point is always preferred.  

In the analysis, the mean of the noise distribution is set to zero. Therefore, the sensitivity of 

the observer, that represents the distance between the noise and the signal distributions, is also the 

mean of the signal distribution. 

 

In the following part, the optimal cutoff point for the human, in the H collaboration level, is 

presented for each of the three types of systems. The influence of the cutoff point position on other 

parts of the objective function is demonstrated. The graphs in this part exhibit relevant functions 

against the human sensitivity ( hd ' ) and the cost of time unit ( 2vT vH ). The analysis was conducted 

for Ps 0.5, A 2, B 0.5, dr 0.5    . 

Results for other probabilities for target ( Ps ) as well as the influence of the time cost 

( 2vT vH ) and the time parameter A  are detailed in Appendix E. 

                                                 
2
 The „extremes‟ in this data set are -3 and 6. Explanation is detailed in chapter ‎6.  
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5.3.1 Human optimal cutoff point influence in Type I systems 

Type I systems give high priority for not causing false alarms. When the human has low 

sensitivity, it is expected to get the highest value possible for the optimal cutoff point. Figure 19(a) 

shows the optimal cutoff point of the human. When the sensitivity of the human ( hd ' ) is low, the 

optimal cutoff point value rises to six (the highest value possible).  

Furthermore, the analysis shows that the total penalty for false alarms grows (in negative 

values) as the sensitivity of the observer decreases (Figure 19, b). This phenomenon exists up to the 

point where the sensitivity is too small. Then, an extreme positive cutoff point is preferred and the 

human marks less objects as targets. Therefore, the total penalty for false alarms decreases as was 

expected in Type I systems. 

Extreme cutoff point results in redundancy of system operation time. As the cutoff point is 

drawn away from the means of the distribution (see Figure 18, b), the distance of the objects from 

the cutoff point increases; and the mean response time, correspondingly, decreases. Figure 19(c) 

shows the redundancy of the system operation time for low human sensitivity. 

 

Figure 19: Optimal cutoff point of the human (a), total penalty of false alarms (b), and system operation time (c)  

in Type I system at the H collaboration level. The human sensitivity and the time cost are ranged along x and y axes. 

 

5.3.2 Human optimal cutoff point influence in Type II systems 

Type II systems give high priority for not missing targets. When the human has low 

sensitivity, it is expected to get the lowest value possible for the optimal cutoff point. Figure 20(a) 

shows the optimal cutoff point of the human. When the sensitivity of the human ( hd ' ) is low, the 

optimal cutoff point value is minus three (the lowest value possible).  

The analysis shows that the total penalty for misses grows (in negative values) as the 

sensitivity of the observer decreases (Figure 20, b). This phenomenon exists up to the point where 

the observer sensitivity is too small. Then, an extreme negative cutoff point is preferred and the 

human marks more objects as targets. Therefore, the total penalty for miss decreases as was 

expected in Type II systems. 
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As was explained for type I, extreme cutoff point results in redundancy of system operation 

time. Figure 20(c) shows the redundancy of the system operation time when the sensitivity of the 

human decreases and an extreme cutoff point is preferred. 

 

Figure 20: Optimal cutoff point of the human (a), total penalty of misses (b), and system operation time (c) 

 in Type II system at the H collaboration level. Human sensitivity and the time cost are ranged along x and y axes. 

 

5.3.3 Human optimal cutoff point influence in Type III systems 

 In type III systems, the gains and penalties are equal for all outcomes, there is no preferable 

error and the cutoff point remains between the means of the distributions even when the sensitivity 

of the observer is low. Figure 21(a) shows the optimal cutoff point of the human. The optimal cutoff 

point gets values that are approximately half of the sensitivity (e.g., when hd' 3 , the cutoff point 

is 1.6). The sensitivity is the distance between the distributions and it shows that the cutoff point is 

approximately in the middle of the distributions. 

As was explained before, the total penalty for misses and the total penalty for false alarms 

grow, as the sensitivity of the observer decreases. In systems of type III, as was introduced above, 

the optimal cutoff point is between the distributions and no extreme cutoff point is preferred. 

Therefore, the total penalties for misses and false alarms continue to decrease for low sensitivities 

as shown in Figure 21(b,c). 

 

Figure 21: Optimal cutoff point of the human (a), total penalty of misses (b), and total penalty of false alarms (c) 

 in Type III system at the H collaboration level. Human sensitivity and the time cost are ranged along x and y axes. 
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5.4 Human’s dominancy analysis 

In the H collaboration level, the human operator operates solely. The human becomes less 

dominant as the level of autonomy of the robot increases. In the R collaboration level, when the 

robot is fully autonomous, the human has no influence.  

The human operations cause an increase in operation time and costs. The human response 

time and motoric time are significantly higher than the robot decision time. Therefore, in the sense 

of time costs, it is reasonable that evolving a human in the recognition process will be less 

profitable when the time cost is high. 

The following graphs present decrease in human dominance, as the response time of the 

human and the time cost increase. In the graphs, a single collaboration level dominates each zone 

(each color represents different operating level: H- blue, HR- cyan, HOR- yellow and R- red). The 

graphs present the collaboration level required to achieve the best system performance. The 

sensitivities of the human ( hd ' ) and the robot ( rd ' ) are ranged along X and Y axes.  

Figure 22(a-c) shows how human dominance reduces as the time cost increases. The time cost 

increases from graph 'a' ( 2vT vH 0.0055  ) to graph 'c' ( 2vT vH 0.0222  ). Accordingly, the area 

of the HR (cyan) and HOR (yellow) collaboration levels diminished. In this specific case, the area 

decreases from 92% in graph 'a' to 60% in graph 'c'. In other cases, the area decreases in a different 

rate. 

 

Figure 22: Human dominance reduces as the time cost increases from graph 'a' to graph 'c'. 
A 10, B 0.5, Ps 0.2    
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The reaction time model is based on an exponential function, ( )
( ) coB x x

t x A e
 

  , that includes 

two parameters: parameter A , that determines the height of the function at the cutoff point, and 

parameter B . The reaction time increases, as A increases and B decreases (see Figure 23).  

 

Figure 23: The response time function (y-axis) for different values of B parameter.  

coA 1, X 0   

Figure 24(a-c) shows how human dominance reduces as the time parameter A  increases. The 

time parameter increases from graph 'a' ( A 2 ) to graph 'c' ( A 10 ). Accordingly, the area of the 

HR (cyan) and HOR (yellow) collaboration levels diminished. Figure 25(a-e) shows how human 

dominance reduces as the time parameter B  increases. The time parameter decreases from graph 'a' 

( B 2 ) to graph 'e' ( B 0 ). Accordingly, the area of the HR and HOR collaboration levels 

diminished. In this specific case, the area decreases from 94% in graph 'a' to 6% in graph 'e'. In 

other cases, the area decreases in a different rate. Analysis shows that in some cases the 

collaboration with a human is not profitable in most of the combinations of human and robot 

sensitivities. In these cases, the use of a simpler system without an option for collaboration should 

be considered.    

 

Figure 24: Human dominance reduces as the response time increases from graph 'a' to graph 'c'. 
vT2vH 0.022, B 0.5, Ps 0.2     
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Figure 25: Human dominance reduces as the mean response time increases from graph 'a' to graph 'e'. 
vT2vH 0.022, A 10, Ps 0.2     
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6 SENSITIVITY ANALYSIS 

The numerical analysis of the collaboration model was conducted for optimal cutoff points. 

Sensitivity analysis of human and robot's cutoff points was performed in order to show how small 

deviation from the optimal values influences the system's objective function score and the optimal 

collaboration level. Specifically, we focused on the cases where small deviations from the human 

optimal cutoff point cause a shift in the optimal collaboration level.  

The analysis was conducted for all three cutoff points: cutoff point of the robot (XCOr) and 

two cutoff points of the human for targets the robot already marked and for targets it did not mark 

(XCOrh and XCOh respectively). In each case analyzed, only one cutoff point was changed. 

 In the analysis, the signal and noise distributions are normalized. The mean of the noise 

distribution is zero and the maximum sensitivity ( rd '  or hd ' ), which is also the position of the 

signal distribution mean, is three. Therefore, in order to show all possible positions, the cutoff 

points' value ranged from minus three to six (i.e., three standard deviation units from the means of 

the distributions). 

6.1 General description and general conclusions 

This section gives general description of the figures, which are shown ahead, and introduces 

some common phenomena. Figure 26 is used as an example.  

Each of the following figures represents a single optimal case for a given set of parameters. 

One can notice that in Figure 26 there is one graph for each of the three cutoff points (XCOh, XCOrh 

and XCOr from left to right). The y-axe represents the system's objective function score. In each 

graph, four lines illustrate how the objective function value varies according to the change of the 

cutoff point value. Each line represents one of the four collaboration levels (H-blue, HR-cyan, 

HOR-yellow and R-red). A black circle marks the optimal cutoff point value on the best 

collaboration level line (the highest point). In this specific case, the objective function score is 7268 

and the optimal cutoff point values are XCOh=1.2, XCOrh=0.8 and XCOr=-1.6. The other parameter's 

values ( dr,dh,Ps,A,B,vT2vH ) are shown in the header of the figure. 

One can see that only the cutoff point of the robot affects the score of the R collaboration 

level (notice straight red line in the left and middle graphs in Figure 26). Similarly, only the cutoff 

point of the human, XCOh, affects the score of the H collaboration level (straight blue line in the 

middle and right graphs). The scores of the HR and HOR collaboration levels are affected from all 

three cutoff points.  

In some cases, small deviation from the optimal cutoff point makes only a slight different in 

the objective function value (notice almost straight yellow line in left graph in Figure 26). In other 
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cases, small deviation from the optimum causes a dramatic decrease of the objective function value. 

If the score of the best collaboration level decreases beneath other collaboration level score, the 

second level becomes the current best collaboration level (e.g., the yellow line in the middle graph 

in Figure 26 decreases beneath the blue line). We denote this: a 'shift' in the best collaboration level. 

In many of the analyzed cases, the optimal level yields a score that is only slightly better than 

another collaboration level score. Particularly, the HR and HOR levels yield almost the same score 

at the optimal cutoff points (see all following figures at this chapter).  

6.2 Type III systems 

6.2.1 Cutoff points analysis 

6.2.1.1 Analysis of the optimal cutoff point of the robot 

In all cases, a change in the value of the robot's cutoff point makes more influence on the 

score of the R collaboration level than on the other levels' score. Therefore, when R is the best 

collaboration level, a smaller deviation from the optimal XCOr may cause best level shifting (i.e., 

smaller than deviations from XCOr when R is not the best collaboration level). 

When the best collaboration level is HR or HOR, small deviations from the optimal XCOr 

usually reduce the objective function score symmetrically in both directions.   

6.2.1.2 Cases where the robot is more sensitive than the human operator 

In most of the cases when the robot is more sensitive than the human ( r hd' d' ), R is the 

best collaboration level. In other cases, HOR is the best collaboration level but it usually has only 

slightly higher score then R. For all cases, a small deviation from the optimal cutoff point does not 

cause a shift in the best collaboration level.  

6.2.1.3 Cases where the human operator is remarkably more sensitive than the robot 

In this work, we assumed that collaboration is beneficial because the human performs better 

than the robot in unstructured environments. Therefore, most of the analysis was focused on cases 

where the human is more sensitive than the robot. The sensitivities of the human ( hd ' ) and the 

robot ( rd ' ) were varied between 0 and 3. We denote that the human is remarkably more sensitive 

than the robot in cases where h r1.5 d' d'  . In cases where h r0 d' d' 1.5    we denote that, the 

human is unremarkably more sensitive than the robot. 

In most of the cases, when the human is remarkably more sensitive than the robot, the best 

collaboration level is HR or HOR. The difference between their score, near the optimal cutoff point, 

is relatively small. A small deviation from the optimal cutoff point of the human, XCOh, does not 
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cause a shift in the best collaboration level. However, a small deviation from the optimal XCOrh 

enforces best level shifting to H (Figure 26). 

 

Figure 26: Example of Type III system's score in a case where the human is remarkably more sensitive than the robot. 

6.2.1.4 Cases where the human operator is unremarkably more sensitive than the robot 

 In most of the cases, when the human is unremarkably more sensitive than the robot 

( h r0 d' d' 1.5   ), the best collaboration level is HR or HOR. The analysis reveals different 

results for high, medium and low probabilities for an object to be a target ( Ps ). 

Figure 27 shows one of these cases where the probability for an object to be a target is high 

( Ps 0.9 ). A small deviation from the optimal cutoff point of the human, XCOh, reduces the system 

score and may cause a level shifting to R. A change from the optimal value of the second cutoff 

point, XCOrh, may change the best collaboration level only if the deviation is in the positive 

direction. A deviation in the negative direction slightly reduces the system score but does not cause 

a shift in the best collaboration level.  

Figure 28 shows a case where the probability for an object to be a target is low ( Ps 0.1 ). In 

this case, a small deviation from the optimal XCOh, may change the best collaboration level only if 

the deviation is in the negative direction. A deviation in the positive direction slightly reduces the 

system score but does not cause a shift in the best collaboration level. A change from the optimal 

value XCOrh, reduces the system score and may cause level shifting. 

Figure 29 shows a case where the probability for an object to be a target is medium 

( Ps 0.5 ). A small deviation from optimal XCOh, in the negative direction may change the best 

collaboration level. On the other hand, a small deviation in the positive direction reduces the system 
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score but does not cause a shift in the best collaboration level. Deviations from the optimal value 

XCOrh, behave the opposite way. 

 

Figure 27: Example of Type III system's score in a case where the human is unremarkably 

 more sensitive than the robot and the probability for a target is high. 

 

Figure 28: Example of Type III system's score in a case where the human is unremarkably 

 more sensitive than the robot and the probability for a target is low. 
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Figure 29: Example of Type III system's score in a case where the human is unremarkably 

 more sensitive than the robot and the probability for a target is medium. 

6.2.2 Influence of the probability for an object to be a target (Ps) 

Generally, for all system types and in all collaboration levels, the system objective function's 

score reduces more sharp when the deviation from the optimal cutoff point is in one direction than 

when is in the other direction. The direction depends on the probability for an object to be a target. 

For a matter of simplicity, we assume in the following discussion that all system's gains and 

penalties of the four possible outcomes are equal.  

In signal detection theory, when the cutoff point moves from the optimal point in the positive 

direction, the score reduces because more false alarms occur (also, fewer targets are missed, but it 

affects the score less). When the cutoff point moves from the optimal point in the negative 

direction, the score reduces because more targets are missed (also, fewer false alarms occur, but it 

affects the score less). See Figure 6 and Figure 7. 

If more objects are targets ( Ps 0.9 ), then usually the probability for miss is more than the 

probability for false alarm. Therefore, the score reduces more sharp if the deviation from the 

optimal cutoff point is in the negative direction (see Figure 30 for example). When less objects are 

targets ( Ps 0.1 ), the probability for false alarm is usually more than the probability for miss. In 

this case, the score reduces sharper if the deviation from the optimal cutoff point is in the positive 

direction (see Figure 31 for example).  
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6.2.3 Influence of the time parameters 

In the following part, we analyze cases where human reaction time is expensive and long. It 

occurs when the time parameters values are: A 10, B 0.5, vT2vH 0.022    . The human reaction 

time in our model depends on the distance of objects value from the cutoff point value. When the 

cutoff point is far from an object, it takes less time to decide whether it is a target or not. 

6.2.3.1 New collaboration levels 

The analysis reveals new collaboration levels, which are derived from the original levels HOR 

and HR and preferred when the reaction time of the human is expensive. The analysis reveals 

different results for high and low probabilities for an object to be a target ( Ps ). 

Figure 30 shows a case where the probability for a target is high ( Ps 0.9 ) and HOR is the 

best collaboration level. In practice, the way of collaboration is different from HOR. One can see 

that the cutoff point of the human for targets that the robot already marked, XCOrh, is set to the 

lowest value possible in the data set (-3). It means that the human keeps all the marks on targets that 

the robot detected, without spending time on rechecking them. The human concentrates only on 

detecting targets that the robot did not mark.  

In addition, a small deviation from the optimal cutoff point of the human, XCOh, enforces best 

level shifting to R. Although the human is much more sensitive, if he does not operate according to 

the optimal cutoff point, the system operates better without collaboration with the human. This is 

probably because of the high cost of human time. 

 

Figure 30: Example of Type III system's score in a case where the human reaction time 

 is expensive and the probability for a target is high. 
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Figure 31 shows a case where the probability for a target is low ( Ps 0.1 ) and HR is the best 

collaboration level. In this case, the collaboration is also different. One can see that the cutoff point 

of the human for targets that the robot did not marked, XCOh, is set to the highest value possible in 

the data set (6). This implies that the human concentrates only on rechecking the robot's 

recommendations for targets. The human does not spend time trying to detect other targets that the 

robot did not recommend. 

 

Figure 31: Example of Type III system's score in a case where the human reaction time 

 is expensive and the probability for a target is low. 

In both cases, due to high human time costs, the best way to collaborate is that the human will 

concentrate only on one type of objects. When many objects are targets ( Ps 0.9 ) the human 

observes only objects that the robot did not mark. The human does not need to remark the objects 

that the robot already marked because this is an inherent property of the HOR collaboration level. 

When only few of the objects are targets ( Ps 0.1 ), the human observes only objects that the robot 

already marked. 

Practically the system created new collaboration levels that are derived from the HR and HOR 

collaboration levels. By ignoring one type of objects by the human, the system reduces the total 

human reaction time cost and can achieve better performance. 

6.2.3.2 The system is more sensitive to changes when the time cost is high 

As human's reaction time costs increases (and takes longer), the score of the collaboration 

levels, which include the human, reduces. The score of the R collaboration level is not affected by 



56 

the reaction time cost. Therefore, the difference between the scores of the best collaboration level 

and the R level reduces. Hence, in many cases when the time cost is high, the system becomes more 

sensitive to changes in human cutoff points' values. The case when the best level shifts to R, 

becomes more common.  

6.2.3.3 Constant time parameters 

Previous work (Bechar, 2006) assumed that the decision time of the human is equal for all 

objects. In this work, we introduce a reaction time model that unties this assumption. In the data set, 

when B 0  the time parameters are constant for all objects (as in previous work).  

As long as the total cost of human reaction time is not expensive (relatively to other costs of 

the system), the question whether the time parameters are constant or not, does not make much 

difference neither in system's objective function value, nor in the best collaboration level. However, 

when human reaction time becomes relatively expensive, constant time parameters leads to quite 

different results. The lower part of Figure 32 shows the case of Figure 31 and the upper part shows 

the same case but with parameter B equals zero. One can see that the scores of the collaboration 

levels that include the human are lower when B 0 and the best collaboration level is R. In this 

specific case, the score reduced in 1642 points, which are 24%. In other cases, the score reduces in a 

different rate. 

 

Figure 32: Example of Type III system's score in a case where the human reaction time is expensive  

and the probability for a target is low. A comparison with constant time parameters ( B 0 ) is presented. 
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6.3 Type I systems 

Systems of type I give high priority for not causing errors of the first type, i.e., detecting a 

target when a target does not exist (false alarm).  

In type III system, R is the best collaboration level in most cases where the robot is more 

sensitive than the human. In type I system, R is the best collaboration level only if the robot is 

remarkably more sensitive ( r h1 d' d'  ). If the robot is unremarkably more sensitive than the 

human, then HR or HOR are the best collaboration level.  

When the human is more sensitive than the robot and the probability for an object to be a 

target is high ( Ps 0.9 ), the system score is more sensitive to deviations from the optimal values 

(relatively to type III system). A small deviation from the optimal cutoff point, XCOh, reduces the 

system score and may cause a level shifting to R only if the deviation is in the negative direction. A 

change from the optimal value of the second cutoff point, XCOrh, may change the best collaboration 

level if the deviation is in the positive direction. A deviation in the negative direction reduces the 

system score but does not cause a shift in the best collaboration level. Figure 33 shows a 

comparison between type I and type III systems in the case that is introduced above.  

When the probability for an object to be a target is low ( Ps 0.1 ), the difference between the 

collaboration levels scores is very small. A small deviation from the optimal cutoff points' values 

may cause a best level shifting but the score remains almost the same. This is true even if the human 

is much more sensitive than the robot (see Figure 34). When the probability for an object to be a 

target is medium ( Ps 0.5 ), the results are similar to those of type III system. 

Analysis of type III system revealed new collaboration level in cases where human reaction 

time is expensive. In type I system this phenomena occurs less often. It occurs only when the 

probability for an object to be a target is low ( Ps 0.1 ), or when the human is no more sensitive 

than the robot. 
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Figure 33: Comparison between Type I and Type III systems' score in a case where  

the human is more sensitive than the robot and the probability for a target is high. 

 

Figure 34: Example of Type I system's score in a case where the probability 

 for a target is low and the difference between the collaboration levels scores is small. 
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6.4 Type II systems 

Systems of type II give high priority for not causing errors of the second type, i.e., missing a 

target. Systems of type III do not prefer one type of error on another. In type II system, R is the best 

collaboration level in most cases where the robot is more sensitive than the human is, as in type III.  

When the human is more sensitive than the robot and the probability for an object to be a 

target is high ( Ps 0.9 ), the difference between the collaboration levels scores is very small. A 

small deviation from the optimal cutoff points' values may cause a best level shifting but the score 

remains almost the same. This is true even if the human is much more sensitive than the robot (see 

Figure 35). When the probability for an object to be a target is low or medium (Ps equals 0.1 or 

0.5), the results are similar to those of type III system. 

Same new collaboration levels come out in type II system in cases where human reaction time 

is expensive. However, it occurs for relatively lower cost of human reaction time than in type III. 

The reason for that is probably the fact that the time cost is set relatively to the reward of one hit. 

The reward for a hit in type II system is five times more than the reward in type III system and 

therefore the comparison is not reliable. 

 

Figure 35: Example of Type II system's score in a case where the probability 

 for a target is high and the difference between the collaboration levels scores is small. 
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7 CONCLUSIONS AND FUTURE RESEARCH 

7.1 Conclusions 

Bechar (2006) developed a model for evaluating performance of human-robot collaborative 

target recognition systems. This work introduces further development of the model by incorporating 

non-constant reaction times. The new model, proposed in this research, might describe actual 

systems in a better way by adjusting time parameters to a specific task and taking into consideration 

the fact that reaction time of the human depends on the strength of the observed object. Evaluating 

the best collaboration level according to the new model, considers the influence of human reaction 

time on system performance. 

The analysis revealed additional collaboration levels, which are derived from the HR and 

HOR collaboration levels defined in Bechar‟s work (Bechar, 2006), and are the best collaboration 

level when human time costs are high. In these collaboration levels, the human concentrates only on 

one type of objects. When many objects are targets, the human observes only objects that the robot 

did not mark and does not check objects that the robot marked (based on the HOR collaboration 

level). When only few of the objects are targets, the human observes only objects that the robot 

recommended and does not try to detect other targets (based on the HR collaboration level). Since 

the human ignores one type of objects, the system reduces the total human reaction time cost and 

can achieve better performance. 

The human ignores objects by setting his/her cutoff point to an extreme value. When the 

cutoff point is the highest positive value possible, none of the objects is higher than the cutoff point 

so none of them is marked as a target. Similarly, when the cutoff point value is the lowest possible, 

all the objects are marked as targets. The analysis shows how the system type, the human 

sensitivity, the probability of an object to be a target, and the time cost all influence the phenomena 

of extreme cutoff point selection. 

When the human sensitivity is low, the human badly discriminates between targets and other 

objects. If the system gives high priority for not causing false alarms (type I systems), the human 

prefers an extreme positive cutoff point, resulting in no objects that are marked as targets, and no 

false alarms. For systems that give high priority for not missing targets (type II systems), an 

extreme negative cutoff point was preferred, resulting in all objects marked as targets and no 

misses. 

The probability of an object to be a target ( Ps ) influences this phenomenon. In type II 

systems, when there are many targets among the objects (i.e., Ps  is high), the system prefers 

extreme cutoff point for higher sensitivities of the human (relatively to low sensitivities in cases 
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where Ps  is not high and an extreme cutoff point is preferred). In a similar manner, when most of 

the objects are not targets (i.e., Ps  is low), in type I systems, an extreme cutoff point is preferred 

for higher sensitivities of the human. A reasonable explanation for this influence is the potential of 

misses or false alarms to occur. When there are many targets, the potential of missing a target is 

higher; and when there are few targets, the potential of false alarms is high.  

The analysis shows that mean reaction time and time costs affect the position of the optimal 

cutoff point. The phenomenon, introduced above, arises for higher human sensitivities as the mean 

time and/or the time cost are higher. Furthermore, the analysis shows that collaboration with a 

human is less profitable in cases when the time cost is high. In these cases, the R collaboration 

level, that does not include a human, is the optimal collaboration level.  

An extreme cutoff point position decreases the total operation time cost. The mean response 

time reduces as the cutoff point is far from the mean of the distribution; therefore, in the sense of 

time costs, the extreme cutoff point is always preferred. 

The position of the cutoff point influences all other parts of the objective function. An 

extreme positive cutoff point, for example, causes small probabilities of false alarms and hits; and 

causes high probabilities of miss and correct rejections. The overall gains and penalties of these 

outcomes are modified accordingly.  

 

7.2 Research limitations 

It must be noted that although this research includes an in-depth analysis of the new objective 

function, it was impossible to analyze and investigate all possible variables' combinations due to the 

multitude of variables that are involved. Hence, the thesis presents the most common trends and the 

conclusions are limited to the analyzed cases. 

Furthermore, the results are strongly linked to the analyzed cases because of the high 

dependency on the many parameters. Therefore, we presented only trends and did not detail 

quantitative results, which are specific and highly depend on the chosen parameters.  

This work focused only on the optimal collaboration level. In some cases, the optimal level 

yields a score that is only slightly better than another collaboration level score. In addition, 

switching the level of operation during the task is related to some operational costs. Hence, it might 

not always be worthy to operate at the best level. The analysis and conclusions are therefore limited 

also in this aspect. 
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7.3 Definition of the new collaboration levels 

The research discovered a phenomenon, in which the human ignores objects by setting his 

cutoff point to an extreme value. An in-depth analysis of this phenomenon revealed two new 

collaboration levels, which are derived from the HR and the HOR collaboration levels defined in 

Bechar‟s work (Bechar, 2006), and are the best collaboration level when the human time cost is 

high. In each of the new collaboration levels, the human observes only one type of objects and 

ignores another. The new collaboration levels can be defined as follows. 

HR2: The human operator observes only objects that the robot recommended to mark as 

targets. The human acknowledges the robot‟s correct detections and ignores recommendations that 

are false alarms. The human operator cannot mark other targets, which the robot did not 

recommend.  

HOR2: Targets are identified and marked automatically by the robot‟s detection algorithm 

and the human operator cannot change these marks. The human operator assignment is to detect and 

mark the targets missed by the robot. 

 

7.4 Future research 

The following directions are worthy future investigation: 

7.4.1 Determination of the Reaction time type: constant versus variable 

This research analyzes the influence of human reaction time in human robot collaborative 

systems. Different aspects of the influence were discussed, but one question remained unanswered: 

When is it essential to regard reaction time as a variable, while designing or analyzing a system, and 

when can it be considered as constant? One of the three terms should occur in order to determine 

reaction time as a constant: 1) when the contribution of the reaction time part to the objective 

function is small relative to the other parts; 2) the difference between the objective function scores 

when using reaction time as a variable or a constant is small; and 3) when the involvement of the 

human operation is small. In some cases, considering constant time parameters will most likely 

produce a good estimation of system performance. However, in other cases, e.g., when the cost of 

system operation time is high, modeling reaction time is probably essential. Future research should 

answer this question and differentiate between those cases. 
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7.4.2 New/additional collaboration levels 

The analysis revealed two new collaboration levels and future research should investigate 

these further. These collaboration levels are derived from the HR and HOR collaboration levels by 

adjusting one of the human cutoff points to extreme positive or negative value. In practice, although 

the optimal cutoff point should make the human concentrate only on one type of objects, the human 

might not operate optimally and therefore, might spend time and efforts on the other type of objects. 

Systems that officially include these two new collaboration levels as part of other levels may 

perform better. Future research should investigate in what cases these collaboration levels are the 

best collaboration level. 

7.4.3 Experiment of human reaction time influence 

This work included a preliminary analysis of human reaction time based on data acquired in 

an experiment conducted by Bechar (2006). Bechar (2006) conducted an experiment simulating 

melon detection in order to examine the influence of different human-robot collaboration levels in a 

target recognition task. During the experiment, all human operations were recorded. In this work, 

we analyzed experimental data, focusing on the human reaction time and regarding them as 

variables. We showed the relation between image complexity and decision time of the human 

operator (see Appendix H). However, since this work was very limited in scope it is included only 

as an Appendix. 

An experiment of target recognition, specially designed to examine human reaction time, 

should check how time pressure on the subjects influences their performance. It can also discover 

how well the reaction time model of Murdock (1985) and other models, describe reaction time.  

7.4.4 Examination of different reaction time models 

This research used a reaction time model based on Murdock (1985). Other models describe 

reaction time differently. Future research can examine other models and validate them with 

experiments. The examination can discover how the influence of human reaction time depends on 

the reaction time model; and what phenomena do not depend on the models. 

7.4.5 Analytical development of an optimal cutoff point  

The new model, proposed in this research, includes a reaction time function that depends on 

the cutoff point position. Signal detection theory does not apply to this time function, and therefore, 

the optimal cutoff point that the theory supply must be adjusted. A further study may provide 

analytical development of the new optimal cutoff point. One must calculate a derivative of the 

objective function in order to find the cutoff point results in the maximum value. 
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7.4.6 Use of mean distances to evaluate mean reaction times 

This study includes analytical development of the mean distance model, which calculates the 

mean distance between the cutoff point and objects of the same category (e.g., mean distance of all 

objects that were 'missed'). Future research can investigate the use of the mean distance model to 

evaluate mean time.  

7.4.7 Collaboration level switching 

This work focused only on the optimal collaboration level. Future research should apply full 

system optimization, which should consider the cost of switching between levels (Takach, 2008) 

and not only the cost of operating at the best collaboration level. 

7.4.8 Collaboration in other stages of human information processing 

Parasuraman et al. (2000) introduce a four-stage model of human information processing (see 

subchapter ‎0). The four stages in the model are: (1) information acquisition, (2) information 

analysis, (3) decision and action selection, and (4) action implementation. In this thesis, we 

introduce a collaboration model only for the decision and action selection stage. Future work should 

investigate levels of collaboration for the other stages.  

7.4.9 Additional analysis 

Due to the multitude variables in the model, there are numerous combinations and cases to 

analyze. This thesis presents the most common trends and additional analyses are required. 
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APPENDIX A - NORMAL, STANDARD NORMAL, SIGNAL AND NOISE DISTRIBUTIONS 

1. Normal distribution 

Here is a short review of the Normal distribution, also called Gaussian distribution.  

If X is normally distributed with mean X  and variance 2

X  we denote: 

2( , )X XX Normal     

The probability density function (PDF) is:  
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The cumulative density function (CDF) is: 
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2. Standard normal distribution 

The standard normal distribution is a normal distribution with a mean of zero and a variance 

of one. If X  is normally distributed with mean X  and variance 2

X , we can normalize X  by 

defining new random variable Z : 
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The PDF of the standard normal distribution is:  
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The CDF of the standard normal distribution is: 
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3. The relation between normal and standard normal distributions 

Here is an interpretation of the link between the normal distribution and the standard normal 

distribution. If X  is normally distributed, then for a specific value cox  we can define coz , a specific 

value of the random variable Z  which is standard normal distributed. 

co X
co

X

x
z






  

The PDF of X  can be defined, using the PDF of Z : 
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The CDF of X  can be defined, using the CDF of Z :  
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4. Signal distribution 

Here are definitions of distribution, PDF and CDF of SX which represents the value of targets 

the observer need to detect. 
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When a cutoff point cox is set, we can define the probabilities of miss and hit: 

( ) ( ) ; ( ) 1 ( )Miss co S co Hit co S coP x F x P x F x    

 

5. Noise distribution 

Here are definitions of distribution, PDF and CDF of NX which represents the value of noises. 
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When a cutoff point cox is set, we can define the probabilities of correct rejection and false alarm: 

( ) ( ) ; ( ) 1 ( )CR co N co FA co N coP x F x P x F x    
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APPENDIX B - EXPRESSION OF Z AS A FUNCTION OF BETA AND D’ (BECHAR, 2006) 

As developed by Bechar (2006). Normalizing the signal and noise distributions is beneficially 

in generalizing the problem rather than using the actual units that fit only to a specific case. The 

cutoff point, cox , gets different interpretation in each normalized distribution. The cutoff points, 

denote as Sz and Nz  for the signal and the noise distributions, respectively, can be expressed by the 

likelihood ratio, β, between the signal and noise density functions in the cutoff point, cox , and the 

distance between the means of the signal and noise distributions,
 

'd  (see chapter ‎2.6 for details). 

For the expressions, the standard deviations ,S N   were assumed to be equal one (Bechar, 2006). 
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APPENDIX C - VALIDATION OF MEAN DISTANCE EQUATIONS 

The development of the mean distances equations is presented in chapter ‎4.1. This appendix 

validates them. The equations for mean distance of negative and positive responses are: 
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For a standard normal distribution with a mean of zero and a standard deviation of one, the 

mean distances received from the equations for variable values of the cutoff point, cox  were plotted 

(solid line in Figure A1).  

In addition, 1000 random numbers from the same distribution were used to calculate the mean 

distance of all positive responses (i.e., objects that are higher from the cutoff point) for each value 

of the cutoff point. Similarly, the mean distance of all negative responses was calculated (i.e., 

objects that are lower from the cutoff point). The experiment was repeated 30 times and the mean 

results between all experiments were plotted (x marks in Figure A1). One can see in Figure A1 that 

the mean distances gotten from the experiment are exactly the means calculated using the equations. 

These results validate the equations. 

 

Figure A1: A validation of equation for mean distances  
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APPENDIX D - DEVELOPMENT OF MEAN REACTION TIME  

The development of mean reaction time is based on Murdock (1985). Different denotations 

for the parameters of the exponential function ( ,A B ) and for the cutoff point ( cox ) is the only 

difference from Murdock‟s model. An exponential function is used in order to transfer the strength 

of an object into the reaction time of the observer. Strength of an object is its distance from the 

cutoff point.  

For negative responses, the distance and the reaction time functions are: 
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For positive responses the distance and the reaction time functions are: 
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Mean reaction times of negative and positive responses depend on the cutoff point and are 

denoted respectively as ( ), ( )co coT x T x  . 
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1. Mean reaction time of negative responses  

In order to find the mean reaction time of negative responses, one must calculate weighted 

average of all reaction times (results from x-values) of objects with a value lower than the cutoff 

point. The weights are the frequencies of x.  
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2. Mean reaction time of positive responses 

In order to find the mean reaction time of positive responses, one must calculate weighted 

average of all reaction times (results from x-values) of objects with a value higher than the cutoff 

point. The weights are the frequencies of x.  
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APPENDIX E - NUMERICAL ANALYSIS - ADDITIONAL RESULTS 

In the following part, the optimal cutoff point of the human in the H collaboration level is 

analyzed for each of the three types of systems. The graphs in this part exhibit the cutoff point 

against the human sensitivity ( hd ' ) and the cost of time unit ( 2vT vH ), for each value of the time 

parameter ( A ). The analysis was conducted for B 0.5, dr 0.5  .  

Figure A2 - Figure A4 show the graphs for systems of type I - III, respectively. Each figure 

shows graphs for different probabilities of object to be target ( Ps 0.1, 0.2, 0.5, 0.8, 0.9 ) 

1. Type I analysis 

Type I systems give high priority for not causing false alarms. Figure A2 shows the optimal 

cutoff point (z-axis) of the human for different probabilities of targets ( Ps ). When Ps  is 0.1 

(Figure A2-a), an extreme positive cutoff point is preferred for relatively high sensitivities 

( hd' 1.5 ). As Ps  increases to 0.5 (Figure A2-c), i.e., half of the objects are targets, the system 

prefers an extreme cutoff point only for lower sensitivities ( hd' 0.5 ). As Ps  increases further to 

0.8, 0.9 (Figure A2-d,e), i.e., most of the objects are targets, the system does not prefer an extreme 

cutoff point. 

2. Type II analysis 

Type II systems give high priority for not missing targets. Figure A3 shows the optimal cutoff 

point (z-axis) of the human for different probabilities of targets ( Ps ). When Ps  is high, 0.9 (Figure 

A3-e), an extreme negative cutoff point is preferred for relatively high sensitivities ( hd' 2.5 ). 

As Ps  decreases to 0.5 (Figure A3-c), the system prefers an extreme cutoff point only for lower 

sensitivities ( hd' 1 ). As Ps  decreases further to 0.2, 0.1 (Figure A3-b,a), i.e., most of the objects 

are not targets, the system prefers an extreme positive cutoff point for low sensitivities ( hd' 1 ). 

3. Type III analysis 

Type III systems do not prefer one type of error on the other. Figure A4 shows the optimal 

cutoff point (z-axis) of the human for different probabilities of targets ( Ps ). When Ps  is 0.5, 

(Figure A4-c), the optimal cutoff point value is approximately half of the human sensitivity, which 

represents the distance between the means of the distributions (i.e., the cutoff point is between the 

means of the distributions). When Ps  decreases to 0.2, 0.1 (Figure A4-a,b), the system prefers an 

extreme positive cutoff point for low sensitivities ( hd' 0.5 1.5  ). When Ps increases to 0.8, 0.9 

(Figure A4-d,e), the system prefers an extreme negative cutoff point for low sensitivities 

( hd' 0.5 1  ). 
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Figure A2: The optimal cutoff point of the human (z-axis) in the H collaboration level in a Type I system. 

(a) Ps 0.1 , (b) Ps 0.2 , (c) Ps 0.5 , (d) Ps 0.8 , (e) Ps 0.9 . B 0.5, dr 0.5  . 

(a) 

(b) 

(c) 

(d) 

(e) 
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Figure A3: The optimal cutoff point of the human (z-axis) in the H collaboration level in a Type II system. 

(a) Ps 0.1 , (b) Ps 0.2 , (c) Ps 0.5 , (d) Ps 0.8 , (e) Ps 0.9 . B 0.5, dr 0.5  . 

(a) 

(b) 

(c) 

(d) 

(e) 
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Figure A4: The optimal cutoff point of the human (z-axis) in the H collaboration level in a Type III system. 

(a) Ps 0.1 , (b) Ps 0.2 , (c) Ps 0.5 , (d) Ps 0.8 , (e) Ps 0.9 . B 0.5, dr 0.5  . 

(a) 

(b) 

(c) 

(d) 

(e) 
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4. Time influence on the optimal cutoff point position 

An extreme cutoff point position decreases the total operation time cost. The mean reaction 

time reduces as the cutoff point is far from the mean of the distribution; therefore, in the sense of 

time costs, extreme cutoff point is always preferred. 

In all the graphs (Figure A2 - Figure A4), the cutoff point varies with the change of the time 

cost ( 2vT vH ) along X-axis. When the time cost is high, an extreme cutoff point is preferred for 

higher human sensitivities. For example, see the left graph in Figure A4-a. When the time cost is 

high ( 2vT vH 0.03  ), an extreme cutoff point (z value is 6) is preferred for human sensitivities 

that are less than two ( hd' 2 ). However, when the time cost is low ( 2vT vH 0.01  ), an 

extreme cutoff point (6) is preferred only for human sensitivities that are less than one ( hd' 1 ). 

Parameter A  is coordinated with mean reaction time of the human (i.e., high mean reaction 

time is expected when A  holds high values) and has the same influence. Parameter A  equals two on 

the left graphs and increases to ten on the right graphs. An extreme cutoff point is preferred for 

higher human sensitivities as parameter A  increases. For example, see Figure A4-a. In the left graph 

A 2  and an extreme cutoff point (6) is preferred only for human sensitivities that are less than one 

( hd' 1 ). As parameter A increases to 5 or 10 (in the other two graphs), an extreme cutoff point 

(6) is preferred also for higher human sensitivities. 

To conclude, the analysis shows that parameter A  and time cost affect the position of the 

optimal cutoff point. The phenomenon, of extreme cutoff point position, arises for higher human 

sensitivities as parameter A  and/or the time cost are higher.  
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Abstract 

This study aims to evaluate the influence of human‟s reaction time on performance of integrated human-
robot target recognition. Particularly, the study presents a model to evaluate the effect of reaction time on 
the human-robot collaboration level. The model‟s objective function quantifies the influence of robot, human, 
environment and task parameters, through a weighted sum of performance measures. Simulation analysis 
considered reaction time that depended on the signal strength of the observed object. Results reveal an 
extreme threshold selection, in two cases: when human sensitivity reduces, and when the cost of time 
increases. An extreme threshold selection decreases the total operational time costs.  

 

Keywords: 

Human-robot collaboration, collaboration levels, reaction time, target recognition. 

 

1 INTRODUCTION 

Autonomous robots are systems that can perform tasks 
without human intervention. They are best suited for 
applications that require accuracy and high yield under 
stable conditions, yet they lack the capability to respond to 
unknown, changing and unpredicted events ‎[1]. Humans, 
dissimilarly, can easily fit themselves into changing 
unstructured environment and undefined targets ‎[1]. By 
taking advantage of the human perception skills and the 
robot's accuracy and consistency, the combined human-
robotic system can be simplified, resulting in improved 
performance ‎[1]. 

In human-robot collaborative systems, types of 
collaboration levels differ by nature, scale, structure, and 
number of levels. Sheridan ‎[2] describes ten levels of 
automation of decision and action selection. Bechar and 
Edan ‎[3] evaluate two collaboration levels for agriculture 
robot guidance through an off-road path. Bruemmer et al. 
‎[4] determine four modes of control of a remote mobile 
robot in an in-door search and exploration task. Hughes 
and Lewis ‎[5] use two different levels of control on robot‟s 
cameras in order to control it in a remote environment. 
Czarnecki and Graves ‎[6] describe a scale of five human-
robot interaction levels for a telerobotic behavior based 
system. 

Target recognition is a critical element in most robotic 
systems ‎[1] including industrial and service applications, 
quality assurance, medical, agriculture and remote sensing 
‎[1]. Automatic target recognition in unstructured outdoor 
environments is characterized by low detection rates and 
high false alarm rates ‎[7]. 

Reaction time is the cognitive time required for the 
observer to decide whether an object is a target or not. 
Accuracy in target recognition measures the ability of the 
observer to detect targets correctly. The relation between 
reaction time and accuracy varies according to whether 
speed or accuracy of performance is emphasized; and 
according to whether one response or another is more 
probable or weighted more heavily ‎[8]. Murdock ‎[9] 
analyses the strength-latency relationship and introduces a 
generic reaction time model based on the distance-from-

criteria of the observed object. He suggests that an 
exponential function is the most reasonable to use in order 
to transfer the object‟s strength, i.e., distance-from-criteria, 
into latency. In this research, a reaction time model, based 
on Murdock ‎[9], is incorporated into Bechar‟s ‎[1] 
collaboration model. 

The study aims to evaluate the influence of human‟s 
reaction time on the performance of an integrated human-
robot system, designated for target recognition tasks. 
Particularly, the study focuses on how reaction time affects 
the level of human- robot collaboration that results in best 
performance. 

2 METHODOLOGY 

2.1 Collaboration levels 

Four collaboration levels for target recognition were 
designed based on ‎[1]: i) H - the Human, unaided, detects 
and marks the desired target; ii) HR - the Human marks 
targets, aided by recommendations from an automatic 
detection algorithm, i.e., the targets are automatically 
marked by a Robot detection algorithm, the human 
acknowledges the robot‟s correct detections, ignores false 
detections and marks targets missed by the robot; iii) HOR 
- the Human Operators' assignment is to cancel false 
detections and to mark the targets missed by an automatic 
Robot detection algorithm; and iv) R - the targets are 
marked automatically by the system (Robot). 

2.2 Collaboration model 

The collaboration model was based on a model defined in 
‎[1]. An objective function describes the expected value of 
system performance, given the properties of the 
environment and the system. The goal is to maximize the 
objective function. The objective function (VIs, equation 1) 
is composed of the four responses of the target detection 
process and the system operational costs:  

    Is Hs Ms FAs CRs TsV V V V V V  (1) 

Where VHs is the gain for target detections (hits), VFAs is 
the penalty for false alarms, VMs is the system penalty for 
missing targets, VCRs is the gain for correct rejections, and 
VTs is the system operation cost. All gain, penalty and cost 
values have the same units, which enable us to add them 
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together to a single value, expressed in the objective 
function. The gain and penalty functions are: 

   Hs S Hs HV N P P V   (2) 

   Ms S Ms MV N P P V   (3) 

1    FAs S FAs FAV N ( P ) P V   (4) 

1    CRs S CRs CRV N ( P ) P V  (5) 

Where, N is the number of objects in the observed image 
and PS is the probability of an object becoming a target. 
The third parameter in the equations, PXs, is the system 

probability for one of the outcomes: hit, miss, false alarm 
or correct rejection (X can be H, M, FA and CR). The fourth 
parameter, VX, is the system gain or penalty from an 
expected outcome. 

The system‟s probability of a certain outcome is influenced 
by the serial structure of the model and is composed of the 
robot and the human probabilities: 

1    Hs Hr Hrh Hr Hh( )P P P P P  (6) 

1    Ms Mr Mh Mr Mrh( )P P P P P  (7) 

1    FAs FAr FArh FAr FAh( )P P P P P  (8) 

1    CRs CRr CRh CRr CRrh( )P P P P P  (9) 

Where:  

PHr is the robot probability of a hit, PHrh is the probability of 
confirming a robot hit and PHh is the human probability of 
detecting a target that the robot did not detect;  

PMr is the robot miss probability, PMrh is the human 
probability of not confirming a robot hit and PMh is the 
human probability of missing a target the robot missed. 
PFAr is the robot false alarm probability, PFArh is the human 
probability of not avoiding a robot false alarm and PFAh is 

the human probability of a false alarm on targets the robot 
correctly rejected; 

PCRr is the robot probability of a correct rejection, PCRrh is 
the human probability of correcting a robot false alarm and 
PCRh is the human probability of a correct rejection on 
targets the robot correctly rejected. 

The sum of hit and miss probabilities (of the same type) 
and the sum of false alarm and correct rejection 
probabilities equals one.  

The system‟s operation cost is: 

1         Ts S t S Hs S FAs CV t V [N P P N ( P ) P ] V  (10) 

Where, tS is the time required by the system to perform a 
task, Vt is the cost of one time unit, and VC is the operation 
cost of one object recognition (hit or false alarm).  

The system time consists of the time it takes the human to 
decide whether to confirm or reject robot detections; and 
the time it takes the human to decide whether objects not 
detected by the robot are targets or not. The robot 
operation time of processing the images and performing 
hits or false alarms, is also included.  
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1 1
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1 1

1 1

1 1
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N ( P ) ( P ) P t

N ( P ) P ( P ) t
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 (11) 

Where: 

tHrh is the human time required to confirm a robot hit and 
tHh is the human time required to hit a target that the robot 
did not hit; 

tMrh is the human time lost when a robot hit is missed and 
tMh is the human time invested when missing a target that 

the robot did not hit; 

 tFArh is the human time needed not to avoid a robot false 
alarm and tFAh is the human false alarm time; 

tCRrh is the human time to correctly reject a robot false 
alarm, tCRh is the human correct rejection time, and tr is the 
robot operation time. 

Explicit operation of the system objective function, VIs, 
which is suitable for all collaboration levels, is: 
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 (12) 

For the H collaboration level, the system objective function 
will be a degenerate form of the full objective function, and 
will not include the robot variables: 
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In the R collaboration level, the system objective function 
will be a degenerate form of the full objective function, and 
will not include the human variables: 

Is S Hr H C Hr M

S FAr FA C FAr CR

r t

V N P [ P (V V ) ( P ) V ]

N ( P ) [ P (V V ) ( P ) V ]

N t V

        

         

  

1

1 1  (14) 

2.3 Reaction time model 

The development of the model that considers the mean 
reaction time is based on Murdock ‎[9]. Different 
denotations for the parameters of the exponential function 
(A, B) and for the cutoff point (xco), is the only difference 
from Murdock‟s model. An exponential function is used in 
order to transfer the strength of an object (its distance from 
the cutoff point) into the reaction time of the observer.  

We use the term „Positive Response‟ to describe objects 
that the system marks. A „Positive Response‟ can be either 
a Hit, if the object is a target; or a False Alarm if it is not. 
The term „Negative Response‟ describes objects with a 
value lower than the cutoff point value, which the system 
does not mark as targets. A „Negative response‟ can be 
either a Miss, if the object is a target; or a Correct 
Rejection if it is not. The reaction time function maps the 
distance of x from a given cutoff point xco into time units 
and it is different for positive and negative responses. An 
exponential function can describe a symmetrical 
descendent of latency on both sides of the yes/no criterion 
(Figure 1). The reaction time function is: 

  

 

 
 


co

co

B ( x x )
co

B( x x )

Ae ; when x x
t( x )

Ae ; otherwise
 (15) 

In order to fit this function to real data, the parameters A 
and B must be adjusted. Different parameters values lead 
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to different reaction time functions. One can define 
different values for negative and positive responses. 

 

Figure 1 - Reaction time function. 

Suppose X is normally distributed with a mean of μ and a 
variance of σ

2
. In order to find the mean reaction time, one 

must calculate the weighted average of all reaction times 
(results from x-values) of the same response. The weights 
are the frequencies of x. The mean reaction time depends 
on the cutoff point value and is denoted as T-(xco), T+(xco) 
for negative and positive responses, respectively. 

The mean reaction time equations for negative and 
positive responses are: 
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The equations that were developed for the normal 
distribution are adjusted to the signal and noise 
distributions. The means and standard deviations of the 
signal and noise distributions are respectively μS, σS and 
μN, σN. We used the appropriate equations (for positive or 
negative responses) and parameters (mean and standard 
deviation of signal or noise distributions) to define 
equations for mean reaction time of all four possible 
outcomes (miss, hit, correct rejection and false alarm): 
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The reaction time function depends on the value of the 
cutoff point xco. In our collaborative system, the robot 
observes the objects first followed by the human. 
Accordingly, the human decides about two different types 
of objects: objects that the robot already marked as 
targets; and objects the robot did not mark (Figure 2). The 
human uses two different cutoff points, for the two types of 
objects. Accordingly, two different reaction time functions 
should be implemented. The denotations with the index rh 
or h (for instance, TCRh, THrh etc.), will represent reaction 
times for objects the robot marked as targets and for those 
it did not, respectively.  

In the objective function, each of the human time variables 
(denoted as tXrh or tXh) represents a superposition of a 
decision time and a motoric time (denoted as tM), in 
accordance with the collaboration level. The decision times 
in the previous work ‎[1] were considered constant. In this 
work, the decision times are replaced with the mean 
reaction times introduced above. 

When the system operates in the R collaboration level the 
robot fulfills the task all by itself and all human time 
variables equal zero (there is no human intervening). 

In the H collaboration level, the human does not use the 
robot‟s help and the time variables are: 

 

   

Mh Mh CRh CRh

Hh Hh M FAh FAh M

t T t T

t T t t T t
 (22) 

In the HR collaboration level, the robot recommends the 
human by indicating potential targets. Then the human 
confirms targets he thinks are real and marks extra targets 
the robot did not indicate. The human does a motoric 
action (marking) if he thinks the robot recommended well. 
The time variables are: 

 

   

 

   

Mh Mh Mrh Mrh

Hh Hh M Hrh Hrh M

CRh CRh CRrh CRrh

FAh FAh M FArh FArh M

t T t T

t T t t T t

t T t T

t T t t T t

 (23) 

In the HOR collaboration level, the human supervises the 
robot. The robot marks targets and the human is checking 
those marks. The human unmarks targets that are not real 
and marks extra targets that the robot missed. In this case, 
the human does a motoric action (unmarking) only if he 
thinks the robot made a mistake. The time variables are: 

  

  

  
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Mh Mh Mrh Mrh M

Hh Hh M Hrh Hrh

CRh CRh CRrh CRrh M

FAh FAh M FArh FArh

t T t T t

t T t t T

t T t T t

t T t t T

 (24) 

The (motoric) time it takes to physically mark or unmark an 
object depends on the system interface and the 
environment conditions. It should not vary between 
detected objects and therefore will remain considered 
constant.  
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Figure 2 - Reaction times diagram. 

3 NUMERICAL ANALYSIS 

A numerical analysis of the model was conducted using 
MatLab 7.1 with optimal human and robot cutoff points. 
The optimal cutoff points were determined by finding the 
cutoff points that yielded the maximal objective function 
value. The objective function score was calculated for each 
possible combination of parameters and variables, for 
each collaboration level.  

3.1 Model parameters 

Task types and parameters 

Analysis focused on three system types characterized by 
the gains and penalties for each outcome (VH,VM,VFA,VCR, 

‎[10]). Table 1 details the values for each type of system. 

Type I gives high priority for not doing errors of the first 
type, i.e., detecting a target when a target does not exist 
(false alarm).  

Type II gives high priority for not doing errors of the second 
type, i.e., missing a target.  

Type III systems do not prefer one type of error and 
therefore yield identical values for all four possible 
outcomes.  

The time cost (VT) is the cost of one time unit of system 
operation. It includes the cost of the human operator and 
the robot since they are operating simultaneously. In order 
to analyze the influence of time cost regardless of the 
system type, it was set relatively to the gain for a hit 
(VT=VH∙VT2H). The ratio between the time cost and the gain 
for a hit, VT2H, was set to the values: -80, -40, -20 (hour

-1
).  

For example, when VH equals 5 points, VT obtained the 

values: -400, -200, -100 points.  

The operational cost (VC) is the cost of the action 
conducted when the system detects a target, either if it is a 
hit or a false alarm. This cost was set to 2 points.  

 

 

Environmental parameters 

The parameters N and PS determine the environmental 

conditions. The objective function was calculated for 1,000 
objects (N). The target probability (PS) represents the 
fraction of targets from all objects and received values 
between 0.1 and 0.9.  

Human parameters 

The decision time was calculated using the mean reaction 
time function introduced above. Parameter A, of the 
function, was set to 2, 5 or 10 seconds and parameter B 
was set to 0, 0.5, 1, 1.5 or 2. The human motoric time (tM) 
of executing an action was set to 2 seconds. 

The sensitivity represents the ability of the observer to 
distinguish between real targets and the other objects. The 
human‟s sensitivity (d’h) was varied between 0.5 and 3. 

Robot parameters 

The sensitivity of the robot (d’r) was varied between 0.5 
and 3. The robot decision time (tr) is negligible relatively to 

the other times and was set to 0.01 seconds. 

 

Table 1. Gains and penalties for different types of systems. 

 Type I Type II Type III 

VH 5 50 10 

VM -10 -10 -10 

VFA -50 -5 -10 

VCR 10 10 10 
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3.2 Cutoff point analysis 

When the sensitivity of the human operator is high, the 
human operator can better distinguish between targets. 
The optimal cutoff point is a point between the means of 
the noise and signal distribution (Figure 3, a). When the 
sensitivity is low, the ability to distinguish between targets 
reduces and it becomes more effective not to examine the 
objects. The optimal cutoff point goes to the extreme and 
the human actually does not mark any object as a target 
(Figure 3, b). When the system gives high priority to “not 
doing false alarms” (Type I), the cutoff point will be set to 
infinity. When there is high priority of not missing a target 
(Type II), the cutoff point will be set to minus infinity, and 

all of the objects will be marked as targets.  

 

Figure 3  - A cutoff point between the distributions‟ means 
when the sensitivity is high (a) and extreme cutoff point 

selection when sensitivity is low (b). 

This influence finds expression in the analysis, regardless 
of the response time costs of the observer. The time costs 
amplify this phenomenon. The mean response time 
reduces as the cutoff point is far from the mean of the 
distribution; therefore, in the sense of time costs, an 
extreme cutoff point is always preferred. The „extremes‟ in 
this data set are -3 and 6. 

The position of the cutoff point influences all other parts of 
the objective function. An extreme positive cutoff point, for 
example, causes small probabilities of false alarms and 
hits; and causes high probabilities of miss and correct 
rejections. The overall gains and penalties of these 
outcomes are modified accordingly.  

 

Human optimal cutoff point influence in Type I systems 

Type I systems give high priority for avoiding false alarms. 
When the human has low sensitivity, it is expected to get 
the highest value possible for the optimal cutoff point. 
Figure 4 (a) shows the optimal cutoff point of the human 
(z-axis). When the sensitivity of the human is low, the 
optimal cutoff point value is six (the highest value 
possible).  

As the cutoff point is drawn away from the means of the 
distribution (see Figure 3, b), the distance of the objects 
from the cutoff point increases; and the mean response 
time, correspondingly, decreases. Figure 4 (b) shows 
decrease in system operation time for low human 
sensitivity. 

Furthermore, the analysis shows that the total penalty for 
false alarms grows as the sensitivity of the observer 
decreases (Figure 4, c). This phenomenon exists up to the 
point where the sensitivity is too small. Then, an extreme 
cutoff point is preferred and the human marks less objects 
as targets. Therefore, the total penalty for false alarms 
decreases as was expected in Type I systems.  

Human optimal cutoff point influence in Type II systems 

Type II systems give high priority for not missing targets. 
Analysis shows that when human has low sensitivity, the 
optimal cutoff point value -3 (the lowest value possible).  

As was explained for Type I, extreme cutoff point results in 
redundancy of system operation time. The total penalty for 
misses behaves the same as the total penalty for false 
alarms in Type I.  

Human optimal cutoff point influence in Type III systems 

In Type III systems, the gains and penalties are equal for 
all outcomes, there is no preferable error and the cutoff 
point remains between the means of the distributions even 
when the sensitivity of the observer is low.  

The total penalty for misses and the total penalty for false 
alarms continue to decrease also for low sensitivities. 

3.3 Human’s dominancy analysis 

The human operations cause an increase in operation time 
and costs. The human response time and motoric time are 
significantly higher than the robot decision time. Therefore, 
in the sense of time costs, it is reasonable that involving a 
human in the recognition process will be less profitable 
when the time cost is high. 

In Figure 5, a single collaboration level dominates each 
zone and the sensitivities of the human and the robot are 
ranged along x and y axes. The graphs present the 
collaboration level required to achieve the best system 
performance. 

 

 

Figure 4 - Optimal cutoff point of the human (a), system operation time (b) and System total penalty for false alarms (c) in the 
H collaboration level, Type I system. Human sensitivity and the time cost are ranged along x and y axes. 
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Figure 5 - Human dominance reduces as the time cost increases.  
Each color represents different operating level: HR- dark grey, HOR- light grey and R- black

 

One can see that human dominance reduces as the time 
cost increases. The time cost increases from the right 
graph (VT2VH=-0.0055) to the left graph (VT2VH=-0.0222). 
Accordingly, the area of the HR and HOR collaboration 
levels diminished. Human dominance also reduces as 
parameter A increases and/or parameter B decreases 
(Equation 15).  

3.4 Object probability analysis 

The probability of an object to be a target (PS) influences 

the phenomenon of the extreme cutoff point selection. In 
Type II systems when there are many targets among the 
objects (i.e., PS is high), the system prefers extreme cutoff 
point for higher sensitivities of the human (relatively to low 
sensitivities in cases where PS is not high and an extreme 
cutoff point is preferred). In a similar manner, when most of 
the objects are not targets (i.e., PS is low), in Type I 
systems, an extreme cutoff point is preferred for higher 
human sensitivities. 

4 CONCLUSIONS 

The numerical analysis reveals a phenomenon of extreme 
optimal cutoff point position for the human, when the 
sensitivity of the human is low. An extreme cutoff point 
position decreases the total operation time cost. Therefore, 
an extreme cutoff point is always preferred when time 
costs are a priority. 

Both mean reaction time and time cost affect the position 
of the optimal cutoff point. This arises for higher human 
sensitivities as the mean time and/or the time cost are 
higher. Furthermore, the analysis shows that collaboration 
with a human is less profitable when the mean reaction 
time and/or the time cost are high.  

The probability of an object to be a target (PS) influences 
the extreme cutoff point selection. A reasonable 
explanation for this influence is the potential of misses or 
false alarms to occur. When there are many targets, the 
potential of miss is higher; and when there are few targets, 
the potential of false alarm is high. Therefore, when the 
system tries to avoid false alarms, it “gives up” on trying to 
detect targets when most of the objects are not targets.  
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APPENDIX G - THE NUMERIC SIMULATION SOFTWARE 

1. The experiment program code 

 

% This program sets the parameter's values and runs an experiment 
  

clear all; 

clc; 

  

% Create directories fot the experiment data 

exName='TypeI';% Experiment name 

DataPath=['D:\Data\', exName, '\']; 

if isdir(DataPath) 

    message=['Directory ', DataPath,  ' already exist. Either delete it or change experiment 

name.']; 

    warning(message) 

    break 

end 

mkdir(DataPath); 

mkdir(DataPath, 'Parameters'); 

mkdir(DataPath, 'Optimal'); 

mkdir(DataPath, 'Graphs'); 

  

%===================================================================== 

% Parameters values 

%===================================================================== 

  

N=1000;                                % # of objects 

  

vH=5;                                  % The gain from Hit 

vM=-10;                                % The panelty for Miss 

vFA=-10*vH;                            % The panelty for False Alarm 

vCR=-1*vM;                             % The gain from Correct Rejection 

  

vT2vH_vector=[-80,-40,-20]./3600;      % The cost of one time unit 

  

vC=-2;                                 % Cost of one object recognition operation 

tr=0.01;                               % The robot time.  sec/object on average 

tMotor=2;                              % The motoric time of the human 

  

Ps_vector=[0.1,0.2,0.5,0.8,0.9];       % Probability for object to be target    

  

dh_vector=[0.5:0.5:3];                 % The sensitivity of the human 

dr_vector=[0.5:0.5:3];                 % The sensitivity of the robot 

  

XcoRange=[-3:0.1:6];                   % All the posible cutoff points 

  

global A;                              % A and B are parameters of the reaction time function 

global B; 

A_vector=[2,5,10]; 

B_vector=[0,0.5,1,1.5,2]; 

  

%Save the parameters for the Graphs programs 

eval(['save ' DataPath 'Parameters\Parameters.mat'])  

  

% Run the experiment 

OptimalBetas 
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2. The data base creator code 

 

% This program create a data set of all possible combination of the parameters.  
% Then, it extracts only the records of the optimal objective function value. 

  
tic 
 

% All possible cutoff points for the robot (r) and the human (h, rh), Based on their 

sensitivities 
%-------------------------------------------------------------------------------------------        

for i=1:sXco 
            Zn_r(:,:,i)=XcoRange(i); 
            Zn_h(:,i,:)=XcoRange(i); 
            Zn_rh(i,:,:)=XcoRange(i); 
        end 

         
%===================================================================== 
% Loops 1 to 6 spread all combinations of parameters' values 
%===================================================================== 

  
        % Loop 1 : vT/vH aspect ratio 
        for ivT2vH = 1:length(vT2vH_vector) 
             vT=vH.*vT2vH_vector(ivT2vH);  

  
            % Loop 2 : B parameter of the mean time function 
            for iB=1:length(B_vector) 
                B=B_vector(iB);  

  
                % Loop 3: A parameter of the mean time function 
                for iA=1:length(A_vector) 
                    A=A_vector(iA);        

                     
                    % Loop 4 : Probability for object to be target 
                    for iPs=1:length(Ps_vector) 
                        Ps=Ps_vector(iPs); 

  
                        % Loop 5 : The range of d' for the human operator sensitivity 
                        for idh=1:length(dh_vector) 
                            dh=dh_vector(idh); 

  
                            % Loop 6 : The range of d' for the robot sensitivity 
                            for idr=1:length(dr_vector) 
                                dr=dr_vector(idr); 

  
%============================================================================================ 
% START - For each combination of parameters - create data set of all possible cutoff points 
%============================================================================================ 
 
% All possible cutoff points for the robot(r) and the human(h,rh). Based on their sensitivities 
%-------------------------------------------------------------------------------------------        

Zs_r=Zn_r-dr;          % Robot's cutoff point for a signal 
Zs_h=Zn_h-dh;          % Human's cutoff point for a signal 
Zs_rh=Zn_rh-dh;        % Human's cutoff point for a  signal, when collaborate with the robot 

  
% The probabilities for the robot (r) and the human (h, rh). Based on the cutoff points 
%-------------------------------------------------------------------------------------------        

pH_r=1-normcdf(Zs_r);      % Robot's probability for a hit  
pFA_r=1-normcdf(Zn_r);     % Robot's probability for a false alarm  
pH_h=1-normcdf(Zs_h);      % Human's probability for a hit  
pFA_h=1-normcdf(Zn_h);     % Human's probability for a false alarm 
pH_rh=1-normcdf(Zs_rh);    % Human's probability for a hit, when collaborate with the robot 
pFA_rh=1-normcdf(Zn_rh);   % Human's probability for a FA, when collaborate with the robot 

  
% The mean response time of the human  for objects the robot did not mark 
%-------------------------------------------------------------------------------------------        

tH_h=meanTime(Zs_h,'p'); 
tM_h=meanTime(Zs_h,'n'); 
tFA_h=meanTime(Zn_h,'p'); 
tCR_h=meanTime(Zn_h,'n'); 
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%  The mean response time of the human for objects the robot did  mark 

%------------------------------------------------------------------------------------------        

tH_rh=meanTime(Zs_rh,'p'); 

tM_rh=meanTime(Zs_rh,'n'); 

tFA_rh=meanTime(Zn_rh,'p'); 

tCR_rh=meanTime(Zn_rh,'n'); 

 

 
%H collaboration level - human alone 

%------------------------------------------------------------------------------------------ 

% Probabilities, gains and penalties 

pHs_H=pH_h;                                     %  Probability for a hit 

vHs_H=N.*Ps.*pHs_H.*vH;                         %  Gain from a hit    

pMs_H=1-pHs_H;                                  %  Probability for a miss  

vMs_H = N.*Ps.*pMs_H.*vM;                       %  Penalty from a miss 

pFAs_H=pFA_h;                                   %  Probability for a false alarm    

vFAs_H=N.*(1-Ps).*pFAs_H.*vFA;                  %  Penalty from a false alarm 

pCRs_H = 1-pFAs_H;                              %  Probability for a correct rejection 

vCRs_H = N.*(1-Ps).*pCRs_H.*vCR;                %  Gain from a correct rejection 

         

% Operational costs 

ts_H= N.*Ps.*pH_h.*(tH_h+tMotor)...             % The system time  

+N.*(1-Ps).*pFA_h.*(tFA_h+tMotor)... 

+N.*Ps.*(1-pH_h).*tM_h... 

+N.*(1-Ps).*(1-pFA_h).*tCR_h;         

vTs_H=ts_H.*vT;                                 % Time costs 

vCs_H=(N.*Ps.*pH_h...                           % Action costs (for detected targets) 

+N.*(1-Ps).*pFA_h).*vC; 

                     

% The objective function 

VIs_H=vHs_H+vMs_H+vFAs_H+vCRs_H+vTs_H+vCs_H; 

 

 

 

 

 

 

  

% HR collaboration level - the robot recommends the human 

%------------------------------------------------------------------------------------------ 

% Probabilities, gains and penalties 

pHs_HR=pH_r.*pH_rh+(1-pH_r).*pH_h;              %  Probability for a hit    

vHs_HR=N.*Ps.*pHs_HR.*vH;                       %  Gain from a hit    

pMs_HR=1-pHs_HR;                                %  Probability for a miss  

vMs_HR=N.*Ps.*pMs_HR.*vM;                       %  Penalty from a miss   

pFAs_HR=pFA_r.*pFA_rh+(1-pFA_r).*pFA_h;         %  Probability for a false alarm     

vFAs_HR=N.*(1-Ps).*pFAs_HR.*vFA;                %  Penalty from a false alarm      

pCRs_HR=1-pFAs_HR;                              %  Probability for a correct rejection      

vCRs_HR=N.*(1-Ps).*pCRs_HR.*vCR;                %  Gain from a correct rejection 

         

% Operational costs 

ts_HR= N.*Ps.*pH_r.*pH_rh.*(tH_rh+tMotor)...    % The system time 

+N.*Ps.*(1-pH_r).*pH_h.*(tH_h+tMotor)... 

+N.*(1-Ps).*pFA_r.*pFA_rh.*(tFA_rh+tMotor)... 

+N.*(1-Ps).*(1-pFA_r).*pFA_h.*(tFA_h+tMotor)... 

+N.*Ps.*pH_r.*(1-pH_rh).*tM_rh... 

+N.*Ps.*(1-pH_r).*(1-pH_h).*tM_h... 

+N.*(1-Ps).*pFA_r.*(1-pFA_rh).*tCR_rh... 

+N.*(1-Ps).*(1-pFA_r).*(1-pFA_h).*tCR_h... 

+N*tr; 

vTs_HR=ts_HR.*vT;                               % Time costs 

vCs_HR=(N.*Ps.*pH_r.*pH_rh...                   % Action costs (for detected targets) 

+N.*Ps.*(1-pH_r).*pH_h... 

+N.*(1-Ps).*pFA_r.*pFA_rh... 

+N.*(1-Ps).*(1-pFA_r).*pFA_h).*vC; 

                     

% The objective function 

VIs_HR=vHs_HR+vMs_HR+vFAs_HR+vCRs_HR+vTs_HR+vCs_HR; 
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%HOR collaboration level - the human supervise the robot 

%------------------------------------------------------------------------------------------ 

% Probabilities, gains and penalties 

% Same as for HR collaboration level 

pHs_HOR=pHs_HR;                                       %  Probability for a hit    

vHs_HOR=vHs_HR;                                       %  Gain from a hit    

pMs_HOR=pMs_HR;                                       %  Probability for a miss  

vMs_HOR=vMs_HR;                                       %  Penalty from a miss   

pFAs_HOR=pFAs_HR;                                     %  Probability for a false alarm     

vFAs_HOR=vFAs_HR;                                     %  Penalty from a false alarm      

pCRs_HOR=pCRs_HR;                                     %  Probability for a correct rejection      

vCRs_HOR=vCRs_HR;                                     %  Gain from a correct rejection 

         

% Operational costs 

ts_HOR= N.*Ps.*pH_r.*pH_rh.*tH_rh...                  % The system time 

+N.*Ps.*(1-pH_r).*pH_h.*(tH_h+tMotor)... 

+N.*(1-Ps).*pFA_r.*pFA_rh.*tFA_rh... 

+N.*(1-Ps).*(1-pFA_r).*pFA_h.*(tFA_h+tMotor)... 

+N.*Ps.*pH_r.*(1-pH_rh).*(tM_rh+tMotor)... 

+N.*Ps.*(1-pH_r).*(1-pH_h).*tM_h... 

+N.*(1-Ps).*pFA_r.*(1-pFA_rh).*(tCR_rh+tMotor)... 

+N.*(1-Ps).*(1-pFA_r).*(1-pFA_h).*tCR_h... 

+N*tr; 

vTs_HOR=ts_HOR.*vT;                                   % Time costs 

vCs_HOR=(N.*Ps.*pH_r.*pH_rh...                        % Action costs (for detected targets) 

+N.*Ps.*(1-pH_r).*pH_h... 

+N.*(1-Ps).*pFA_r.*pFA_rh... 

+N.*(1-Ps).*(1-pFA_r).*pFA_h).*vC; 

 

% The objective function 

VIs_HOR=vHs_HOR+vMs_HOR+vFAs_HOR+vCRs_HOR+vTs_HOR+vCs_HOR; 

 

 

 

 

  

%R collaboration level - fully autonomous robot 

%------------------------------------------------------------------------------------------ 

% Probabilities, gains and penalties 

pHs_R=pH_r;                                           %  Probability for a hit  

vHs_R=N.*Ps.*pHs_R.*vH;                               %  Gain from a hit    

pMs_R=1-pHs_R;                                        %  Probability for a miss 

vMs_R = N.*Ps.*pMs_R.*vM;                             %  Penalty from a miss   

pFAs_R=pFA_r;                                         %  Probability for a false alarm 

vFAs_R=N.*(1-Ps).*pFAs_R.*vFA;                        %  Penalty from a false alarm      

pCRs_R = 1-pFAs_R;                                    %  Probability for a correct rejection 

vCRs_R = N.*(1-Ps).*pCRs_R.*vCR;                      %  Gain from a correct rejection 

         

% Operational costs 

ts_R=N*tr*ones(sXco,sXco,sXco);                       % The system time 

vTs_R=ts_R.*vT;                                       % Time costs 

vCs_R=(N.*Ps.*pH_r+N.*(1-Ps).*pFA_r).*vC;             % Action costs (for detected targets) 

         

% The objective function 

VIs_R=vHs_R+vMs_R+vFAs_R+vCRs_R+vTs_R+vCs_R; 
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%===================================================================== 

% This part extracts the records of the optimal system objective function  

% from the data. For each collaboration level, the maximum value of  

% the objective function is found, and the indices of the cutoff points are 

% used to extract the value of the other functions. 

%===================================================================== 

 

 

  

%H collaboration level - human alone 

%------------------------------------------------------------------------------------------ 

% Find index of optimal Betas   

        opt_VIs_H(idr,idh,iPs,iB,iA,ivT2vH)=max(VIs_H(:)); 

        [x yz]=find(VIs_H==opt_VIs_H(idr,idh,iPs,iB,iA,ivT2vH)); 

        iXrh_H(idr,idh,iPs,iB,iA,ivT2vH)=x(1); 

        iXh_H(idr,idh,iPs,iB,iA,ivT2vH)=yz(1)-length(VIs_H)*(ceil(yz(1)./length(VIs_H))-1); 

        iXr_H(idr,idh,iPs,iB,iA,ivT2vH)=ceil(yz(1)./length(VIs_H)); 

        irh_H=iXrh_H(idr,idh,iPs,iB,iA,ivT2vH); 

        ih_H=iXh_H(idr,idh,iPs,iB,iA,ivT2vH); 

        ir_H=iXr_H(idr,idh,iPs,iB,iA,ivT2vH); 

  

% Create the optimal data metrix based on  optimal Betas 

        opt_pHs_H(idr,idh,iPs,iB,iA,ivT2vH)=pHs_H(irh_H,ih_H,ir_H); 

        opt_vHs_H(idr,idh,iPs,iB,iA,ivT2vH)=vHs_H(irh_H,ih_H,ir_H); 

        opt_pMs_H(idr,idh,iPs,iB,iA,ivT2vH)=pMs_H(irh_H,ih_H,ir_H); 

        opt_vMs_H(idr,idh,iPs,iB,iA,ivT2vH)=vMs_H(irh_H,ih_H,ir_H); 

        opt_pFAs_H(idr,idh,iPs,iB,iA,ivT2vH)=pFAs_H(irh_H,ih_H,ir_H); 

        opt_vFAs_H(idr,idh,iPs,iB,iA,ivT2vH)=vFAs_H(irh_H,ih_H,ir_H); 

        opt_pCRs_H(idr,idh,iPs,iB,iA,ivT2vH)=pCRs_H(irh_H,ih_H,ir_H); 

        opt_vCRs_H(idr,idh,iPs,iB,iA,ivT2vH)=vCRs_H(irh_H,ih_H,ir_H); 

        opt_ts_H(idr,idh,iPs,iB,iA,ivT2vH)=ts_H(irh_H,ih_H,ir_H); 

        opt_vTs_H(idr,idh,iPs,iB,iA,ivT2vH)=vTs_H(irh_H,ih_H,ir_H); 

        opt_vCs_H(idr,idh,iPs,iB,iA,ivT2vH)=vCs_H(irh_H,ih_H,ir_H); 

        opt_tH_h_H(idr,idh,iPs,iB,iA,ivT2vH)=tH_h(irh_H,ih_H,ir_H); 

        opt_tM_h_H(idr,idh,iPs,iB,iA,ivT2vH)=tM_h(irh_H,ih_H,ir_H); 

        opt_tFA_h_H(idr,idh,iPs,iB,iA,ivT2vH)=tFA_h(irh_H,ih_H,ir_H); 

        opt_tCR_h_H(idr,idh,iPs,iB,iA,ivT2vH)=tCR_h(irh_H,ih_H,ir_H); 

 

 

 

  

%HR collaboration level - the robot recommends the human 

%------------------------------------------------------------------------------------------ 

% Find index of optimal Betas   

        opt_VIs_HR(idr,idh,iPs,iB,iA,ivT2vH)=max((VIs_HR(:))); 

        [x yz]=find(VIs_HR==opt_VIs_HR(idr,idh,iPs,iB,iA,ivT2vH)); 

        iXrh_HR(idr,idh,iPs,iB,iA,ivT2vH)=x(1); 

        iXh_HR(idr,idh,iPs,iB,iA,ivT2vH)=yz(1)-length(VIs_HR)*(ceil(yz(1)./length(VIs_HR))-1); 

        iXr_HR(idr,idh,iPs,iB,iA,ivT2vH)=ceil(yz(1)./length(VIs_HR)); 

        irh_HR=iXrh_HR(idr,idh,iPs,iB,iA,ivT2vH); 

        ih_HR=iXh_HR(idr,idh,iPs,iB,iA,ivT2vH); 

        ir_HR=iXr_HR(idr,idh,iPs,iB,iA,ivT2vH); 

  

% Create the optimal data metrix based on  optimal Betas 

        opt_pHs_HR(idr,idh,iPs,iB,iA,ivT2vH)=pHs_HR(irh_HR,ih_HR,ir_HR); 

        opt_vHs_HR(idr,idh,iPs,iB,iA,ivT2vH)=vHs_HR(irh_HR,ih_HR,ir_HR); 

        opt_pMs_HR(idr,idh,iPs,iB,iA,ivT2vH)=pMs_HR(irh_HR,ih_HR,ir_HR); 

        opt_vMs_HR(idr,idh,iPs,iB,iA,ivT2vH)=vMs_HR(irh_HR,ih_HR,ir_HR); 

        opt_pFAs_HR(idr,idh,iPs,iB,iA,ivT2vH)=pFAs_HR(irh_HR,ih_HR,ir_HR); 

        opt_vFAs_HR(idr,idh,iPs,iB,iA,ivT2vH)=vFAs_HR(irh_HR,ih_HR,ir_HR); 

        opt_pCRs_HR(idr,idh,iPs,iB,iA,ivT2vH)=pCRs_HR(irh_HR,ih_HR,ir_HR); 

        opt_vCRs_HR(idr,idh,iPs,iB,iA,ivT2vH)=vCRs_HR(irh_HR,ih_HR,ir_HR); 

        opt_ts_HR(idr,idh,iPs,iB,iA,ivT2vH)=ts_HR(irh_HR,ih_HR,ir_HR); 

        opt_vTs_HR(idr,idh,iPs,iB,iA,ivT2vH)=vTs_HR(irh_HR,ih_HR,ir_HR); 

        opt_vCs_HR(idr,idh,iPs,iB,iA,ivT2vH)=vCs_HR(irh_HR,ih_HR,ir_HR); 

        opt_tH_h_HR(idr,idh,iPs,iB,iA,ivT2vH)=tH_h(irh_HR,ih_HR,ir_HR); 

        opt_tM_h_HR(idr,idh,iPs,iB,iA,ivT2vH)=tM_h(irh_HR,ih_HR,ir_HR); 

        opt_tFA_h_HR(idr,idh,iPs,iB,iA,ivT2vH)=tFA_h(irh_HR,ih_HR,ir_HR); 

        opt_tCR_h_HR(idr,idh,iPs,iB,iA,ivT2vH)=tCR_h(irh_HR,ih_HR,ir_HR); 

        opt_tH_rh_HR(idr,idh,iPs,iB,iA,ivT2vH)=tH_rh(irh_HR,ih_HR,ir_HR); 

        opt_tM_rh_HR(idr,idh,iPs,iB,iA,ivT2vH)=tM_rh(irh_HR,ih_HR,ir_HR); 

        opt_tFA_rh_HR(idr,idh,iPs,iB,iA,ivT2vH)=tFA_rh(irh_HR,ih_HR,ir_HR); 

        opt_tCR_rh_HR(idr,idh,iPs,iB,iA,ivT2vH)=tCR_rh(irh_HR,ih_HR,ir_HR); 
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%HOR collaboration level - the human supervise the robot 

%------------------------------------------------------------------------------------------ 

% Find index of optimal Betas   

        opt_VIs_HOR(idr,idh,iPs,iB,iA,ivT2vH)=max(VIs_HOR(:)); 

        [x yz]=find(VIs_HOR==opt_VIs_HOR(idr,idh,iPs,iB,iA,ivT2vH)); 

        iXrh_HOR(idr,idh,iPs,iB,iA,ivT2vH)=x(1); 

        iXh_HOR(idr,idh,iPs,iB,iA,ivT2vH)=… 

yz(1)-length(VIs_HOR)*(ceil(yz(1)./length(VIs_HOR))-1); 

        iXr_HOR(idr,idh,iPs,iB,iA,ivT2vH)=ceil(yz(1)./length(VIs_HOR)); 

        irh_HOR=iXrh_HOR(idr,idh,iPs,iB,iA,ivT2vH); 

        ih_HOR=iXh_HOR(idr,idh,iPs,iB,iA,ivT2vH); 

        ir_HOR=iXr_HOR(idr,idh,iPs,iB,iA,ivT2vH); 

  

% Create the optimal data metrix based on  optimal Betas 

        opt_pHs_HOR(idr,idh,iPs,iB,iA,ivT2vH)=pHs_HOR(irh_HOR,ih_HOR,ir_HOR); 

        opt_vHs_HOR(idr,idh,iPs,iB,iA,ivT2vH)=vHs_HOR(irh_HOR,ih_HOR,ir_HOR); 

        opt_pMs_HOR(idr,idh,iPs,iB,iA,ivT2vH)=pMs_HOR(irh_HOR,ih_HOR,ir_HOR); 

        opt_vMs_HOR(idr,idh,iPs,iB,iA,ivT2vH)=vMs_HOR(irh_HOR,ih_HOR,ir_HOR); 

        opt_pFAs_HOR(idr,idh,iPs,iB,iA,ivT2vH)=pFAs_HOR(irh_HOR,ih_HOR,ir_HOR); 

        opt_vFAs_HOR(idr,idh,iPs,iB,iA,ivT2vH)=vFAs_HOR(irh_HOR,ih_HOR,ir_HOR); 

        opt_pCRs_HOR(idr,idh,iPs,iB,iA,ivT2vH)=pCRs_HOR(irh_HOR,ih_HOR,ir_HOR); 

        opt_vCRs_HOR(idr,idh,iPs,iB,iA,ivT2vH)=vCRs_HOR(irh_HOR,ih_HOR,ir_HOR); 

        opt_ts_HOR(idr,idh,iPs,iB,iA,ivT2vH)=ts_HOR(irh_HOR,ih_HOR,ir_HOR); 

        opt_vTs_HOR(idr,idh,iPs,iB,iA,ivT2vH)=vTs_HOR(irh_HOR,ih_HOR,ir_HOR); 

        opt_vCs_HOR(idr,idh,iPs,iB,iA,ivT2vH)=vCs_HOR(irh_HOR,ih_HOR,ir_HOR); 

        opt_tH_h_HOR(idr,idh,iPs,iB,iA,ivT2vH)=tH_h(irh_HOR,ih_HOR,ir_HOR); 

        opt_tM_h_HOR(idr,idh,iPs,iB,iA,ivT2vH)=tM_h(irh_HOR,ih_HOR,ir_HOR); 

        opt_tFA_h_HOR(idr,idh,iPs,iB,iA,ivT2vH)=tFA_h(irh_HOR,ih_HOR,ir_HOR); 

        opt_tCR_h_HOR(idr,idh,iPs,iB,iA,ivT2vH)=tCR_h(irh_HOR,ih_HOR,ir_HOR); 

        opt_tH_rh_HOR(idr,idh,iPs,iB,iA,ivT2vH)=tH_rh(irh_HOR,ih_HOR,ir_HOR); 

        opt_tM_rh_HOR(idr,idh,iPs,iB,iA,ivT2vH)=tM_rh(irh_HOR,ih_HOR,ir_HOR); 

        opt_tFA_rh_HOR(idr,idh,iPs,iB,iA,ivT2vH)=tFA_rh(irh_HOR,ih_HOR,ir_HOR); 

        opt_tCR_rh_HOR(idr,idh,iPs,iB,iA,ivT2vH)=tCR_rh(irh_HOR,ih_HOR,ir_HOR);     

 

 

 

  

%R collaboration level - fully autonomous robot 

%------------------------------------------------------------------------------------------ 

% Find index of optimal Betas   

        opt_VIs_R(idr,idh,iPs,iB,iA,ivT2vH)=max(VIs_R(:)); 

        [x yz]=find(VIs_R==opt_VIs_R(idr,idh,iPs,iB,iA,ivT2vH)); 

        iXrh_R(idr,idh,iPs,iB,iA,ivT2vH)=x(1); 

        iXh_R(idr,idh,iPs,iB,iA,ivT2vH)=yz(1)-length(VIs_R)*(ceil(yz(1)./length(VIs_R))-1); 

        iXr_R(idr,idh,iPs,iB,iA,ivT2vH)=ceil(yz(1)./length(VIs_R)); 

        irh_R=iXrh_R(idr,idh,iPs,iB,iA,ivT2vH); 

        ih_R=iXh_R(idr,idh,iPs,iB,iA,ivT2vH); 

        ir_R=iXr_R(idr,idh,iPs,iB,iA,ivT2vH); 

  

% Create the optimal data metrix based on  optimal Betas 

        opt_pHs_R(idr,idh,iPs,iB,iA,ivT2vH)=pHs_R(irh_R,ih_R,ir_R); 

        opt_vHs_R(idr,idh,iPs,iB,iA,ivT2vH)=vHs_R(irh_R,ih_R,ir_R); 

        opt_pMs_R(idr,idh,iPs,iB,iA,ivT2vH)=pMs_R(irh_R,ih_R,ir_R); 

        opt_vMs_R(idr,idh,iPs,iB,iA,ivT2vH)=vMs_R(irh_R,ih_R,ir_R); 

        opt_pFAs_R(idr,idh,iPs,iB,iA,ivT2vH)=pFAs_R(irh_R,ih_R,ir_R); 

        opt_vFAs_R(idr,idh,iPs,iB,iA,ivT2vH)=vFAs_R(irh_R,ih_R,ir_R); 

        opt_pCRs_R(idr,idh,iPs,iB,iA,ivT2vH)=pCRs_R(irh_R,ih_R,ir_R); 

        opt_vCRs_R(idr,idh,iPs,iB,iA,ivT2vH)=vCRs_R(irh_R,ih_R,ir_R); 

        opt_ts_R(idr,idh,iPs,iB,iA,ivT2vH)=ts_R(irh_R,ih_R,ir_R); 

        opt_vTs_R(idr,idh,iPs,iB,iA,ivT2vH)=vTs_R(irh_R,ih_R,ir_R); 

        opt_vCs_R(idr,idh,iPs,iB,iA,ivT2vH)=vCs_R(irh_R,ih_R,ir_R); 
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%find Max objective function  

        all_VIs=[opt_VIs_H(idr,idh,iPs,iB,iA,ivT2vH),opt_VIs_HR(idr,idh,iPs,iB,iA,ivT2vH),… 

opt_VIs_HOR(idr,idh,iPs,iB,iA,ivT2vH),opt_VIs_R(idr,idh,iPs,iB,iA,ivT2vH)]; 

        opt_VIs(idr,idh,iPs,iB,iA,ivT2vH)=max(all_VIs); 

  

%find best CL based on Max objective function  

        CL=find(all_VIs==opt_VIs(idr,idh,iPs,iB,iA,ivT2vH)); 

        opt_CL(idr,idh,iPs,iB,iA,ivT2vH)=CL(1); % 1=H, 2=HR, 3=HOR, 4=R 

  

% Find best Zs, Zn for the optimal CL 

        all_pHs=[opt_pHs_H(idr,idh,iPs,iB,iA,ivT2vH),opt_pHs_HR(idr,idh,iPs,iB,iA,ivT2vH),… 

opt_pHs_HOR(idr,idh,iPs,iB,iA,ivT2vH),opt_pHs_R(idr,idh,iPs,iB,iA,ivT2vH)]; 

        all_pFAs=[opt_pFAs_H(idr,idh,iPs,iB,iA,ivT2vH),opt_pFAs_HR(idr,idh,iPs,iB,iA,ivT2vH),… 

opt_pFAs_HOR(idr,idh,iPs,iB,iA,ivT2vH),opt_pFAs_R(idr,idh,iPs,iB,iA,ivT2vH)];   

        opt_Zss(idr,idh,iPs,iB,iA,ivT2vH)=norminv(all_pHs(CL(1))); 

        opt_Zns(idr,idh,iPs,iB,iA,ivT2vH)=norminv(all_pFAs(CL(1))); 

  

% find best dTag of the overall system 

        opt_dTags(idr,idh,iPs,iB,iA,ivT2vH)=… 

opt_Zns(idr,idh,iPs,iB,iA,ivT2vH)-opt_Zss(idr,idh,iPs,iB,iA,ivT2vH);                             

        opt_lnBs(idr,idh,iPs,iB,iA,ivT2vH)=… 

-0.5.*(opt_Zss(idr,idh,iPs,iB,iA,ivT2vH).^2-opt_Zns(idr,idh,iPs,iB,iA,ivT2vH).^2); 

  

%Calculate the optimal Zn (r h rh) 

        opt_Zn_r_H(idr,idh,iPs,iB,iA,ivT2vH)=Zn_r(irh_H,ih_H,ir_H); 

        opt_Zn_h_H(idr,idh,iPs,iB,iA,ivT2vH)=Zn_h(irh_H,ih_H,ir_H); 

        opt_Zn_rh_H(idr,idh,iPs,iB,iA,ivT2vH)=Zn_rh(irh_H,ih_H,ir_H); 

        opt_Zn_r_HR(idr,idh,iPs,iB,iA,ivT2vH)=Zn_r(irh_HR,ih_HR,ir_HR); 

        opt_Zn_h_HR(idr,idh,iPs,iB,iA,ivT2vH)=Zn_h(irh_HR,ih_HR,ir_HR); 

        opt_Zn_rh_HR(idr,idh,iPs,iB,iA,ivT2vH)=Zn_rh(irh_HR,ih_HR,ir_HR); 

        opt_Zn_r_HOR(idr,idh,iPs,iB,iA,ivT2vH)=Zn_r(irh_HOR,ih_HOR,ir_HOR); 

        opt_Zn_h_HOR(idr,idh,iPs,iB,iA,ivT2vH)=Zn_h(irh_HOR,ih_HOR,ir_HOR); 

        opt_Zn_rh_HOR(idr,idh,iPs,iB,iA,ivT2vH)=Zn_rh(irh_HOR,ih_HOR,ir_HOR); 

        opt_Zn_r_R(idr,idh,iPs,iB,iA,ivT2vH)=Zn_r(irh_R,ih_R,ir_R); 

        opt_Zn_h_R(idr,idh,iPs,iB,iA,ivT2vH)=Zn_h(irh_R,ih_R,ir_R); 

        opt_Zn_rh_R(idr,idh,iPs,iB,iA,ivT2vH)=Zn_rh(irh_R,ih_R,ir_R); 

         

%Calculate the optimal Zs (r h rh) 

        opt_Zs_r_H(idr,idh,iPs,iB,iA,ivT2vH)=Zs_r(irh_H,ih_H,ir_H); 

        opt_Zs_h_H(idr,idh,iPs,iB,iA,ivT2vH)=Zs_h(irh_H,ih_H,ir_H); 

        opt_Zs_rh_H(idr,idh,iPs,iB,iA,ivT2vH)=Zs_rh(irh_H,ih_H,ir_H); 

        opt_Zs_r_HR(idr,idh,iPs,iB,iA,ivT2vH)=Zs_r(irh_HR,ih_HR,ir_HR); 

        opt_Zs_h_HR(idr,idh,iPs,iB,iA,ivT2vH)=Zs_h(irh_HR,ih_HR,ir_HR); 

        opt_Zs_rh_HR(idr,idh,iPs,iB,iA,ivT2vH)=Zs_rh(irh_HR,ih_HR,ir_HR); 

        opt_Zs_r_HOR(idr,idh,iPs,iB,iA,ivT2vH)=Zs_r(irh_HOR,ih_HOR,ir_HOR); 

        opt_Zs_h_HOR(idr,idh,iPs,iB,iA,ivT2vH)=Zs_h(irh_HOR,ih_HOR,ir_HOR); 

        opt_Zs_rh_HOR(idr,idh,iPs,iB,iA,ivT2vH)=Zs_rh(irh_HOR,ih_HOR,ir_HOR); 

        opt_Zs_r_R(idr,idh,iPs,iB,iA,ivT2vH)=Zs_r(irh_R,ih_R,ir_R); 

        opt_Zs_h_R(idr,idh,iPs,iB,iA,ivT2vH)=Zs_h(irh_R,ih_R,ir_R); 

        opt_Zs_rh_R(idr,idh,iPs,iB,iA,ivT2vH)=Zs_rh(irh_R,ih_R,ir_R);         

         

%===================================================================== 

% END - For each combination of parameters 

%===================================================================== 

                    

                    end     % loop 6 

                end         % loop 5  

            end             % loop 4 

        end                 % loop 3  

    end                     % loop 2 

end                         % loop 1 

  

eval(['save ', DataPath, 'Optimal\', 'OptimalData.mat'])   % Save the optimal data 

  

toc 
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3. The graph generator code 

The graph generator was developed using the GUI assistant of MatLab. The assistant 

automatically created most of the following code. The bolded parts were added to the generated 

code. 

 

function varargout = GraphGUI(varargin) 

gui_Singleton = 1; 

gui_State = struct('gui_Name',       mfilename, ... 

                   'gui_Singleton',  gui_Singleton, ... 

                   'gui_OpeningFcn', @GraphGUI_OpeningFcn, ... 

                   'gui_OutputFcn',  @GraphGUI_OutputFcn, ... 

                   'gui_LayoutFcn',  [] , ... 

                   'gui_Callback',   []); 

if nargin && ischar(varargin{1}) 

    gui_State.gui_Callback = str2func(varargin{1}); 

end 

if nargout 

    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 

else 

    gui_mainfcn(gui_State, varargin{:}); 

end 

   

global dr dh Ps B A vT2vH; 

global exName DataPath GraphType_str; 

global x_str y_str z_str subG_str P1_str P2_str P3_str iP1 iP2 iP3; 

dr=1; dh=2; Ps=3; B=4; A=5; vT2vH=6; 

return; 

  

% --- Executes just before GraphGUI is made visible. 

function GraphGUI_OpeningFcn(hObject, eventdata, handles, varargin) 

% Choose default command line output for GraphGUI 

handles.output = hObject; 

% Update handles structure 

guidata(hObject, handles); 

  

function varargout = GraphGUI_OutputFcn(hObject, eventdata, handles)  

varargout{1} = handles.output; 

 

% --- Executes on selection change in funName. 

function funName_Callback(hObject, eventdata, handles) 

global z_str; 

val=get(hObject,'Value'); 

str=get(hObject,'String'); 

if ~strcmp(str{val}, '-----------------------') 

    z_str=str{val}; 

    Graph_CreateFcn(hObject, eventdata, handles); 

end 

return; 

   

% --- Executes during object creation, after setting all properties. 

function funName_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

  

% --- Executes on selection change in expName. 

function expName_Callback(hObject, eventdata, handles) 

global exName DataPath; 

val=get(hObject,'Value'); 

str=get(hObject,'String'); 

exName=str{val}; 

DataPath=['D:\Data\', exName, '\']; 

TypeDetails_CreateFcn(hObject, eventdata, handles); 

Graph_CreateFcn(hObject, eventdata, handles); 

return; 
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% --- Executes during object creation, after setting all properties. 

function expName_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

% --- Executes during object creation, after setting all properties. 

function TypeDetails_CreateFcn(hObject, eventdata, handles) 

global DataPath; 

var =['N vH vM vFA vCR vC tr tMotor']; 

eval(['load ' DataPath 'Parameters\Parameters.mat ' var])  

str={['N=' num2str(N)]; ['vH=' num2str(vH)];['vM=' num2str(vM)];['vFA=' num2str(vFA)];['vCR=' 

num2str(vCR)];['vC=' num2str(vC)];['tr=' num2str(tr)];['tMotor=' num2str(tMotor)]}; 

set(handles.TypeDetails,'String', str); 

return; 

  

  

% --- Executes on selection change in axisX. 

function axisX_Callback(hObject, eventdata, handles) 

global x_str; 

val=get(hObject,'Value'); 

str=get(hObject,'String'); 

x_str=str{val}; 

return; 

 
% --- Executes during object creation, after setting all properties. 

function axisX_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

  

% --- Executes on selection change in axis_y. 

function axisY_Callback(hObject, eventdata, handles) 

global y_str; 

val=get(hObject,'Value'); 

str=get(hObject,'String'); 

y_str=str{val}; 

return; 

 

% --- Executes during object creation, after setting all properties. 

function axisY_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

% --- Executes on selection change in axisP1. 

function axisP1_Callback(hObject, eventdata, handles) 

global P1_str; 

val=get(hObject,'Value'); 

str=get(hObject,'String'); 

P1_str=str{val}; 

listP1_CreateFcn(hObject, eventdata, handles); 

textP1_CreateFcn(hObject, eventdata, handles); 

return; 

  

% --- Executes during object creation, after setting all properties. 

function axisP1_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

  

% --- Executes on selection change in axisP2. 

function axisP2_Callback(hObject, eventdata, handles) 

global P2_str; 

val=get(hObject,'Value'); 

str=get(hObject,'String'); 

P2_str=str{val}; 

listP2_CreateFcn(hObject, eventdata, handles); 

textP2_CreateFcn(hObject, eventdata, handles); 

return; 

 



102 

 

% --- Executes during object creation, after setting all properties. 

function axisP2_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

% --- Executes on selection change in axisP3. 

function axisP3_Callback(hObject, eventdata, handles) 

global P3_str; 

val=get(hObject,'Value'); 

str=get(hObject,'String'); 

P3_str=str{val}; 

listP3_CreateFcn(hObject, eventdata, handles); 

textP3_CreateFcn(hObject, eventdata, handles); 

return; 

 

% --- Executes during object creation, after setting all properties. 

function axisP3_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

  

% --- Executes on selection change in axisSubG. 

function axisSubG_Callback(hObject, eventdata, handles) 

global subG_str; 

val=get(hObject,'Value'); 

str=get(hObject,'String'); 

subG_str=str{val}; 

return; 

 

% --- Executes during object creation, after setting all properties. 

function axisSubG_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

  

% --- Executes on button press in pushbutton1. 

function pushbuttonGraph_Callback(hObject, eventdata, handles) 

listP1_CreateFcn(hObject, eventdata, handles); 

textP1_CreateFcn(hObject, eventdata, handles); 

listP2_CreateFcn(hObject, eventdata, handles); 

textP2_CreateFcn(hObject, eventdata, handles); 

listP3_CreateFcn(hObject, eventdata, handles); 

textP3_CreateFcn(hObject, eventdata, handles); 

Graph_CreateFcn(hObject, eventdata, handles); 

return; 

  

% --- Executes on selection change in listP1. 

function listP1_Callback(hObject, eventdata, handles) 

global iP1; 

iP1=get(hObject,'Value'); 

Graph_CreateFcn(hObject, eventdata, handles); 

return; 

 
% --- Executes during object creation, after setting all properties. 

function listP1_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

  

global DataPath; 

var =['dr_vector dh_vector Ps_vector B_vector A_vector vT2vH_vector']; 

eval(['load ' DataPath 'Parameters\Parameters.mat ' var])  

global P1_str; 

val=get(handles.axisP1,'Value'); 

str=get(handles.axisP1,'String'); 

P1_str=str{val}; 

vP1=eval([P1_str '_vector']); 

list=vP1; 

set(handles.listP1,'String', list, 'Value', 1); 

return; 
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% --- Executes on selection change in listP2. 

function listP2_Callback(hObject, eventdata, handles) 

global iP2; 

iP2=get(hObject,'Value'); 

Graph_CreateFcn(hObject, eventdata, handles); 

return; 

   

% --- Executes during object creation, after setting all properties. 

function listP2_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

  

global DataPath; 

var =['dr_vector dh_vector Ps_vector B_vector A_vector vT2vH_vector']; 

eval(['load ' DataPath 'Parameters\Parameters.mat ' var])  

global P2_str; 

val=get(handles.axisP2,'Value'); 

str=get(handles.axisP2,'String'); 

P2_str=str{val}; 

vP2=eval([P2_str '_vector']); 

list=vP2; 

set(handles.listP2,'String', list, 'Value', 1); 

return; 

  

% --- Executes on selection change in listP3. 

function listP3_Callback(hObject, eventdata, handles) 

global iP3; 

iP3=get(hObject,'Value'); 

Graph_CreateFcn(hObject, eventdata, handles); 

return; 

 
% --- Executes during object creation, after setting all properties. 

function listP3_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

  

global DataPath; 

var =['dr_vector dh_vector Ps_vector B_vector A_vector vT2vH_vector']; 

eval(['load ' DataPath 'Parameters\Parameters.mat ' var])  

global P3_str; 

val=get(handles.axisP3,'Value'); 

str=get(handles.axisP3,'String'); 

P3_str=str{val}; 

vP3=eval([P3_str '_vector']); 

list=vP3; 

set(handles.listP3,'String', list, 'Value', 1); 

return; 

  

% --- Executes during object creation, after setting all properties. 

function textP1_CreateFcn(hObject, eventdata, handles) 

global P1_str; 

set(handles.textP1, 'String', P1_str); 

return; 

  

  

% --- Executes during object creation, after setting all properties. 

function textP2_CreateFcn(hObject, eventdata, handles) 

global P2_str; 

set(handles.textP2, 'String', P2_str); 

return; 

  

% --- Executes during object creation, after setting all properties. 

function textP3_CreateFcn(hObject, eventdata, handles) 

global P3_str; 

set(handles.textP3, 'String', P3_str); 

return; 

  

% --- Executes on selection change in GraphType. 

function GraphType_Callback(hObject, eventdata, handles) 

val=get(hObject,'Value'); 

str=get(hObject,'String'); 

GraphType_str=str{val}; 

Graph_CreateFcn(hObject, eventdata, handles); 

return; 
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% --- Executes during object creation, after setting all properties. 

function Graph_CreateFcn(hObject, eventdata, handles) 

global dr dh Ps B A vT2vH; 

global exName DataPath GraphType_str; 

global x_str y_str z_str subG_str P1_str P2_str P3_str iP1 iP2 iP3; 

  

% Load the matrix for z cordination 

eval(['load ' DataPath 'Optimal\OptimalData.mat ' z_str])  

% Load parameters values 

var =['dr_vector dh_vector Ps_vector B_vector A_vector vT2vH_vector']; 

eval(['load ' DataPath 'Parameters\Parameters.mat ' var])  

  

switch z_str 

    case 'vT/VI_H' 

        eval(['load ' DataPath 'Optimal\OptimalData.mat opt_vTs_H opt_VIs_H'])  

        z=opt_vTs_H./opt_VIs_H; 

    case 'vT/VI_HR' 

        eval(['load ' DataPath 'Optimal\OptimalData.mat opt_vTs_HR opt_VIs_HR'])  

        z=opt_vTs_HR./opt_VIs_HR; 

    case 'vT/VI_HOR' 

        eval(['load ' DataPath 'Optimal\OptimalData.mat opt_vTs_HOR opt_VIs_HOR'])  

        z=opt_vTs_HOR./opt_VIs_HOR; 

    case 'vT/VI_R' 

        eval(['load ' DataPath 'Optimal\OptimalData.mat opt_vTs_R opt_VIs_R'])  

        z=opt_vTs_R./opt_VIs_R;     

    otherwise 

        % Load the matrix for z cordination 

        eval(['load ' DataPath 'Optimal\OptimalData.mat ' z_str])  

        z=eval(z_str); 

end 

x=eval(x_str); 

y=eval(y_str); 

subG=eval(subG_str); 

P1=eval(P1_str); 

P2=eval(P2_str); 

P3=eval(P3_str); 

  

% Rearrange the data matrix 

mat=permute(z,[y,x,subG,P1,P2,P3]); 

  

vx=eval([x_str '_vector']); 

vy=eval([y_str '_vector']); 

vsubG=eval([subG_str '_vector']); 

vP1=eval([P1_str '_vector']); 

vP2=eval([P2_str '_vector']); 

vP3=eval([P3_str '_vector']); 

  

Gname=[ exName '            ' z_str '            X=' x_str '  Y=' y_str '  subG=' subG_str '          

' P1_str '=' eval(['num2str(' P1_str '_vector(iP1),2)']) '  ' P2_str '=' eval(['num2str(' 

P2_str '_vector(iP2),2)']) '  ' P3_str '=' eval(['num2str(' P3_str '_vector(iP3),2)'])]; 

set(handles.GraphsTitle, 'String', Gname); 

  

hold on 

for i=1:6 

    eval(['h=handles.A' num2str(i) ';']) 

    reset(h); 

    set(h,'Visible', 'on'); 

    plot(h,1,1); 

    set(h,'Visible', 'off'); 

end 

for isubG=1:length(vsubG) 

    eval(['h=handles.A' num2str(isubG) ';']) 

    set(h,'Visible', 'on'); 

    if strcmp(z_str, 'opt_CL') 

        contourf('v6',h,vx,vy,mat(:,:,isubG,iP1,iP2,iP3), [1 2 3 4]); 

    elseif strcmp(GraphType_str, 'contour') 

        [C,h1] = contour(h,vx,vy,mat(:,:,isubG,iP1,iP2,iP3)); 

        clabel(C,h1,'FontSize',8);   

    elseif strcmp(GraphType_str, 'mesh') 

        mesh(h,vx,vy,mat(:,:,isubG,iP1,iP2,iP3)); 

    end 

    xlabel(h,x_str); 

    ylabel(h,y_str); 

    title(h,[subG_str ' = ' num2str(vsubG(isubG))]); 

end 

datacursormode on 

hold off 

return; 

  

%===================================================================== 
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4. The mean time function 

 

function [mean]=meanTime(Zco,direction) 
% meanTime function calculates  mean reaction time for a given cutoff point 
% meanTime(Zco,direction)  
%   Zco - is the cutoff point 
%   direction can be 'p' or 'n' - result in different calculations for 

positive ('p') and negative ('n') decisions 

  
global A; %A and B declared in the main program 
global B; 

  
if direction=='p' 
    mean=A*exp(B*Zco+B*B/2).*((1-normcdf(Zco+B))./(1-normcdf(Zco))); 
elseif direction=='n' 
    mean=A*exp(-B*Zco+B*B/2).*(normcdf(Zco-B)./normcdf(Zco)); 
end; 

 



106 



107 

APPENDIX H - THE RELATION BETWEEN IMAGE COMPLEXITY AND REACTION TIME 

Bechar (2006) designed and performed a melon detection experiment in order to examine 

different human robot collaboration levels for a specific target detection task in an agriculture 

environment. In this work, the experimental data is used to analyze the reaction time of the human 

operator. The analysis focuses on the relation between image complexity and reaction time. 

1. Melon detection experiment 

Full description of the experiment can be found in chapter 6 of Bechar thesis (2006). 

Task. The participants of the experiment were asked to detect ready-to-pick melons on a 

digital image and mark them on the screen (see example in Figure 36). Some of the participants 

fulfilled the task with a help of a robot according to the level of collaboration. 

Subjects. 120 IEM undergraduate students were assigned to 10 groups. The participants were 

encouraged to achieve high performance through the promise of a monetary award. 

Targets database. Melon images were manually selected from a video taken by a camera 

moving along a melon row in a field, in various illumination conditions. The melons were partially 

covered by leaves and had different colors and sizes. The images were classified into three levels of 

complexities (low, intermediate, and high) by a panel of three experts. The image complexity 

represents the difficulty level of detecting targets in the image. The location of true targets in each 

image was manually identified and saved in a targets database.  

Design. In each session, fifteen participants from all experimental groups were seated in a 

classroom in front of working stations for target detection that were simulated with a PC and a 

program written in MatLab. The participants viewed 180 images, a target was defined as any yellow 

or orange melon, and the task was to mark all the targets in the images. The participants were 

divided in advance into ten groups, each of which was given one of two objective function weights 

(represented by a reward system for minimum false alarm rate or for maximum hit rate), one of two 

different robot detection performance qualities, and one of three collaboration levels as shown in 

Table 4. In the experiment, the computer simulated the robot operation by picking targets and non-

target objects (marked as false alarms) from the database. The participants received feedback on 

their performance during the experiment after each image. The feedback included the current 

objective function score (score), the last image number of hits, false alarms and Misses. The 

participants had unlimited time to observe the images and the time cost was set to zero. 
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Figure 36: An example of the graphical user interface of the experiment. 

2. Data preparation 

During the experiment the activities of the human operator, the objects marked, and the time 

of each action were automatically recorded. The raw data is attached in Appendix I. 

Each image in the targets database includes up to three melons. When the human observes 

some melons at a time, it is impossible to define what the correct reaction time is for each of the 

melons. Furthermore, the image complexity was determined for the whole image and not per melon. 

Therefore, only images that contain one melon were used for the analysis (a total of 84 images were 

used). Among these images, 30 were of the low complexity images, 35 of the intermediate and 19 

of the high complexity images. In this case, the image complexity describes the difficulty to detect a 

single melon in the image.  

The analysis was performed for records of subjects that worked in the HR collaboration level 

and had to remark targets that the robot recommended (if the recommended object is a really a 

ready to pick melon). Data from 48 subjects was analyzed (groups 7-10 in Bechar's experiment). 



109 

Table 4: The experimental groups (Bechar, 2006). 

 

3. Results 

Two time measures were used. The first measure (T2mark ) is the time it took the subject to 

mark a target after the image appeared on screen. The second measure (T2next ) is the time spent 

until the subject hits the "Next" button (after the image appeared). The difference between the two 

time measures is 1.98 seconds on average (with a standard deviation of 1.34). This is the average 

time, which the subject spends in order to recheck his decision and to look for other targets.  

For each analyzed group (groups 7-10), two Single Factor ANOVA tests were used (one for 

each measure) in order to determine if there is a statistically significant difference between the three 

image complexity levels. In all groups (except one case), the detection mean time in high 

complexity images was longer than that of low and medium complexity images. Similarly, the 

detection mean time in intermediate complexity images was longer than that of low complexity 

images (see Tables 5-6). Results indicate that for both of the measures, there is a significant 

(  0.05 ) difference between the three image complexity levels. P-values in all tests (except for 

T2next  in group 8) are less than 0.001(see Tables 7-8). An exceptional case is found in group 8. In 

this case, T2next  of high complexity images (2.56) is lower than that of medium complexity 

images (2.62). Despite this, there is significant difference between the three image complexity 

levels (P-value = 0.013).  

To conclude, the reaction time depends on image complexity and it decreases as image 

complexity decreases. This result supports the assumption that human reaction depends on the 

strength of the observed object. 
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Table 5: Summary of the statistical data of the T2mark measure. 

 

 
Table 6: Summary of the statistical data of the T2next measure. 
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Table 7: Results of Single Factor ANOVA tests of the T2mark measure. 

 

 
Table 8: Results of Single Factor ANOVA tests of the T2next measure. 
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APPENDIX I - RAW DATA OF THE EXPERIMENT 

The raw data of the experiment is divided by group number and image complexity level 

(twelve classes in total). The data details the subject number (S #), the image number (I #), the time 

it took the subject to mark the image (T2mark), and the time it took the subject to press the “Next” 

button (T2next). The list continues from the left column to the right. 

 

 

Group 7, image complexity 1: 

 
S # I # T2mark T2next 

70 6 1.875 3 
70 7 1.875 3.203 

70 15 2.312 3.546 

70 19 1.797 3.109 
70 34 3.219 4.985 

70 46 1.829 3.25 

70 47 2.078 3.25 
70 48 1.172 2.328 

70 57 1.828 3.187 

70 63 1.907 9.141 
70 64 1.859 3.484 

70 67 1.407 2.797 

70 68 4.969 6.234 
70 77 1.656 3.172 

70 80 2.079 3.282 

70 82 1.359 3.062 
70 97 2.703 4.187 

70 111 1.5 2.922 

70 206 1.579 3 
70 220 2.344 4.172 

70 221 1.359 2.5 

70 230 1.765 3.265 
70 306 1.703 3.547 

70 307 2.124 4.031 
70 411 2.734 4.297 

71 6 1.203 6.905 

71 7 1.187 3.609 
71 15 1.235 2.532 

71 19 0.843 2.062 

71 26 0.992 7.634 
71 46 1.078 5.764 

71 47 1.406 2.453 

71 48 1.5 2.828 
71 54 1.734 2.953 

71 57 2.78 4.374 

71 63 1.484 3.093 
71 64 1.156 3.109 

71 67 1.016 2.703 

71 68 2.141 3.453 
71 80 0.985 1.938 

71 82 2.312 5.499 

71 97 0.921 4.482 
71 206 1.047 2.718 

71 208 1.078 2.312 

71 209 1.921 4.671 
71 211 0.609 1.766 

71 220 2.312 4.796 

71 221 0.876 3.795 
71 230 4.594 6.187 

71 306 1.015 2.296 

71 307 1.203 5.812 

71 411 4.859 6.296 

72 6 1.602 4.728 

72 15 0.857 1.698 

 

72 19 0.903 2.009 

72 26 0.903 2.212 

72 46 1.735 2.819 
72 47 0.684 1.633 

72 48 0.919 1.775 

72 54 0.898 2.106 
72 57 1.13 2.4 

72 63 1.022 2.214 

72 64 2.146 4.634 
72 67 1.09 2.196 

72 80 0.919 2.009 

72 97 1.14 3.687 
72 208 0.701 2.289 

72 209 0.96 2.261 

72 220 0.824 1.788 
72 221 0.826 2.259 

72 306 1.161 4.537 

72 307 1.648 2.799 
72 411 0.82 2.028 

73 6 0.938 2.094 

73 15 1.578 2.406 

73 19 1.344 2.625 

73 26 1.11 2.407 

73 46 1.094 1.922 
73 47 1.328 2.265 

73 48 1.235 2.031 
73 54 1.938 3 

73 57 1.438 2.641 

73 63 1.297 2.406 
73 64 0.953 2.312 

73 67 1.297 2.312 

73 68 1.297 2.203 
73 80 1 1.625 

73 82 1.39 2.218 

73 97 1.578 2.484 
73 206 1.203 2.078 

73 208 0.64 1.296 

73 209 1.156 3.609 

73 211 1.141 1.969 

73 220 1.484 2.203 

73 221 0.922 1.656 
73 230 1.031 1.828 

73 306 1.734 2.781 

73 307 1.485 2.36 
73 411 1.485 2.797 

74 6 1.719 3.844 

74 15 1.417 2.649 
74 19 1.109 4.252 

74 26 1.201 3.463 

74 46 1.687 2.875 
74 47 1.064 2.373 

74 48 0.964 2.379 

74 54 1.172 3.765 
74 57 2.015 4.453 

74 63 1.156 3.812 

74 64 1.5 4.094 

74 67 1.166 2.41 

74 68 1.172 3.125 

74 80 1.43 2.659 

74 82 2.375 4.796 
74 97 1.672 4.984 

74 206 1.281 3.812 

74 208 1.353 3.156 
74 209 1.187 4.359 

74 211 1.166 3.032 

74 220 2.527 3.543 
74 221 1.244 2.689 

74 230 1.094 3.312 

74 306 1.25 4.531 
74 307 1.063 2.234 

75 6 1.36 4.078 

75 15 1.562 2.703 
75 19 1.575 5.795 

75 26 1.105 2.057 

75 46 1.343 4.999 
75 47 1.391 2.75 

75 48 1.575 2.615 

75 54 1.578 2.625 

75 57 2.437 4.483 

75 63 2.171 5.249 

75 64 1.749 5.342 
75 67 2.021 4.83 

75 68 2.297 5.359 
75 82 3.562 5.406 

75 97 3.093 7.03 

75 206 3.015 5.343 
75 208 3.076 4.577 

75 209 8.218 11.045 

75 211 1.619 2.927 
75 220 1.765 3.655 

75 221 1.412 3.054 

75 306 2.577 4.28 
75 307 1.656 3.187 

76 6 3.746 6.186 

76 7 3.249 5.802 

76 15 1.644 3.122 

76 19 1.925 3.959 

76 26 1.878 3.383 
76 46 3.681 5.311 

76 47 1.493 2.987 

76 48 1.694 3.435 
76 54 3.532 5.76 

76 57 2.361 3.883 

76 63 2.794 4.539 
76 67 1.555 3.358 

76 68 1.832 3.432 

76 80 1.864 3.42 
76 82 1.645 3.774 

76 97 3.997 9.383 

76 206 6.186 8.03 
76 208 5.823 7.472 

76 209 5.017 6.57 

76 211 2.018 3.281 

76 220 3.499 5.007 
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76 221 1.335 2.825 

76 230 2.043 3.462 

76 306 4.753 6.242 

76 307 1.252 3.092 

76 411 2.205 3.634 
77 6 1.071 2.461 

77 15 0.889 2.452 

77 19 1.112 2.002 
77 26 0.689 1.722 

77 34 0.737 1.64 

77 46 7.306 9.611 
77 47 1.084 2.878 

77 48 0.792 1.626 

77 57 2.183 4.916 
77 63 1.134 3.524 

77 64 1.517 3.601 

77 68 3.619 7.483 
77 77 1.363 3.16 

77 82 3.863 10.261 

77 97 1.748 5.896 
77 111 1.626 6.764 

77 206 1.241 3.969 

77 209 1.777 3.355 
77 211 0.695 1.599 

77 220 1.548 2.851 

77 221 1.084 2.516 
77 306 2.176 5.777 

77 307 1.536 3.833 

77 411 4.473 6.046 
78 6 0.875 1.859 

78 7 0.984 2.203 

78 15 1.125 1.922 
78 19 0.969 2.172 

78 26 0.844 1.719 

78 46 0.734 1.828 
78 47 0.984 1.828 

78 48 0.828 1.781 

78 54 0.781 1.687 
78 57 1.578 2.797 

78 63 0.89 2.078 

78 64 0.735 1.672 
78 67 0.765 1.765 

78 68 1.078 2.156 

78 80 0.937 1.703 
78 82 0.734 1.734 

78 97 1.859 3.094 

78 206 0.938 1.953 
78 208 0.578 1.828 

78 209 1 2.156 

78 211 0.89 1.703 
78 220 0.657 1.657 

78 221 0.765 1.922 
78 306 0.828 1.953 

78 307 0.922 1.875 

78 411 0.984 2.031 
79 6 1.044 3.305 

79 7 0.997 3.211 

79 15 1.294 2.635 
79 19 0.952 3.029 

79 26 1.078 2.515 

79 46 0.699 5.232 
79 47 0.966 2.088 

79 48 0.89 1.983 

79 54 0.543 1.583 
79 57 1.025 3.478 

 

79 63 1.134 3.059 

79 64 1.31 4.24 

79 67 0.733 2.544 

79 68 0.9 3.679 

79 80 1.124 2.483 
79 82 0.901 3.462 

79 97 1.297 4.61 

79 206 1.107 3.242 
79 208 0.749 1.858 

79 209 1.195 4.175 

79 211 0.64 1.53 
79 220 1.013 2.307 

79 221 0.78 1.748 

79 307 0.827 3.024 
79 411 0.962 5.215 

7001 6 1.209 2.434 

7001 7 1.608 5.587 
7001 15 1.377 2.097 

7001 19 1.734 3.283 

7001 26 1.679 3.136 
7001 46 1.437 2.592 

7001 47 1.102 2.066 

7001 48 1.055 1.762 
7001 54 1.762 2.814 

7001 57 1.999 3.199 

7001 63 1.347 2.725 
7001 64 1.857 2.76 

7001 67 1.124 1.943 

7001 68 1.467 2.518 
7001 80 1.52 2.575 

7001 82 1.881 2.784 

7001 97 2.229 3.411 
7001 206 1.111 2.37 

7001 208 1.595 2.725 

7001 209 1.348 2.503 
7001 211 1.203 2.119 

7001 220 1.117 2.372 

7001 221 1.638 2.498 
7001 306 1.422 2.74 

7001 307 1.378 2.327 

7002 6 0.754 1.715 
7002 7 0.842 2.675 

7002 15 0.947 1.935 

7002 19 0.813 1.788 
7002 26 0.765 1.713 

7002 34 0.576 1.374 

7002 46 2.455 9.022 
7002 47 2.868 4.08 

7002 48 0.704 1.53 

7002 57 1.596 3.084 
7002 63 0.96 2.015 

7002 64 1.041 2.029 
7002 68 6.383 19.579 

7002 77 2.571 4.153 

7002 82 2.363 9.498 
7002 97 3.146 6.215 

7002 111 4.232 6.153 

7002 206 0.854 1.802 
7002 209 0.88 1.855 

7002 211 0.754 1.848 

7002 220 0.894 1.922 
7002 221 0.902 1.774 

7002 306 1.041 2.376 

7002 307 0.886 2.246 
7002 411 3.744 7.153 

 

Group 7, image complexity 2: 

 
S # I # T2mark T2next 

70 16 1.734 3.25 
70 27 1.5 3.032 

70 33 1.859 3.218 

70 35 2.593 4.062 
70 41 1.984 4.281 

70 42 1.297 2.75 

70 62 2.188 3.782 
70 65 3.14 4.531 

70 69 1.406 2.625 

70 72 2.188 3.688 
70 76 1.937 3.031 

70 83 1.032 2.141 

70 87 1.734 3.078 
70 95 1.969 3.531 

70 105 1.844 3.266 

70 204 2.609 4.734 
70 207 1.86 3.156 

70 210 2.438 3.953 

70 217 5.703 6.968 
70 219 1.375 2.906 

70 223 2.016 3.516 

70 224 1.078 2.343 
70 231 3.859 5.656 

70 303 1.656 3.015 
70 304 1.516 2.734 

70 308 2.547 3.937 

70 310 1.906 3.359 
70 322 6.89 8.828 

70 401 3.421 4.843 

71 14 1.312 3.484 
71 16 1.765 5.358 

71 27 1.312 2.859 

71 33 0.672 2.047 
71 35 2.061 9.744 

71 41 12.547 14.328 

71 42 2.562 4.14 
71 62 1.922 3.749 

71 65 2.781 4.812 

71 69 0.781 4.781 
71 70 1.094 2.844 

71 72 2.156 10.296 

71 87 0.812 2.172 
71 95 4.803 6.292 

71 105 1.296 6.996 

71 204 3.64 4.968 
71 207 3.489 5.284 

71 217 1.906 4.828 

71 219 0.938 7.547 
71 223 1.031 2.859 

71 231 1.639 5.887 

71 303 1.219 4.125 
71 304 1.016 2.735 

71 319 5.294 10.369 

71 322 0.921 2.187 
72 14 1.121 2.32 

72 16 5.173 6.288 

72 27 0.929 2.014 
72 33 1.059 2.227 

72 35 2.657 6.422 

72 41 1.106 2.274 

72 42 1.259 2.364 
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72 65 2.488 3.437 

72 69 0.917 2.285 

72 70 1.697 2.741 

72 72 0.995 2.457 

72 87 0.919 1.62 
72 92 0.938 2.484 

72 95 0.982 2.68 

72 105 2.157 4.094 
72 207 0.872 2.01 

72 210 1.054 2.757 

72 212 1.791 2.913 
72 217 1.337 2.799 

72 219 0.747 1.915 

72 231 2.406 4.047 
72 304 1.682 3.239 

72 308 1.344 6.281 

72 322 1.791 2.834 
73 27 1.547 2.265 

73 33 1.265 2.14 

73 35 2.422 4.094 
73 41 1.782 2.61 

73 42 1.046 1.64 

73 62 1.5 3.141 
73 65 1.688 2.485 

73 69 1.047 2.641 

73 70 1.328 2.437 
73 72 1.328 2.125 

73 87 1.125 1.719 

73 92 1.891 3.188 
73 95 1 1.656 

73 105 2.188 4.203 

73 204 1.641 2.672 
73 207 1.016 1.766 

73 210 1.266 2.234 

73 217 1.407 2.172 
73 219 1.093 2.046 

73 223 1.328 2.125 

73 304 1.297 2.813 
73 308 3.125 5.016 

73 310 1.75 2.719 

73 319 2.125 5.172 
73 322 1.25 2.141 

73 401 2.704 4.297 

74 14 2.565 3.84 
74 16 1.312 6.046 

74 27 1.359 4.312 

74 33 1.042 2.829 
74 35 2.203 7.312 

74 41 1.217 2.326 

74 42 1.525 3.497 
74 62 1.86 5.516 

74 65 1.372 3.975 
74 69 0.875 2.797 

74 70 1.756 4.714 

74 72 1.171 4.421 
74 87 1.337 2.814 

74 92 1.781 6.172 

74 95 0.764 2.371 
74 105 2.64 6.968 

74 204 2.594 4.641 

74 207 1.653 3.213 
74 210 1.657 4.219 

74 217 1.937 3.375 

74 219 1.197 3.529 
74 223 1.297 5.094 

74 231 2.937 5.437 

74 303 2.049 4.683 
74 304 0.886 2.767 

74 308 2.719 5.281 

74 320 1.75 4.5 

74 322 1.492 4.943 

74 401 2.313 3.938 

75 16 5.342 7.17 

75 27 2.687 4.406 

75 33 1.724 2.853 

75 35 5.608 9.436 

75 41 3.093 4.296 

75 42 2.156 3.39 

75 62 2.562 7.702 
75 65 2.859 4.108 

75 69 3.265 5.873 

75 70 1.353 2.482 
75 72 1.531 5.14 

75 87 1.753 2.898 

75 92 3.187 5.702 
75 95 1.075 3.024 

75 105 9.357 11.935 

75 204 3.797 6.562 
75 207 1.611 2.563 

75 210 4.187 6.515 

75 219 1.649 2.942 
75 231 8.092 11.061 

75 303 1.921 4.452 

75 304 1.173 2.243 
75 319 5.764 12.497 

75 322 2.511 4.903 

76 27 2.71 4.852 
76 33 8.088 9.412 

76 35 4.12 7.685 

76 41 1.252 2.549 
76 42 2.217 3.68 

76 62 3.618 5.761 

76 65 2.202 3.514 
76 69 2.172 3.846 

76 70 2.203 3.744 

76 72 1.433 2.956 
76 87 2.572 4.498 

76 92 5.834 8.658 

76 95 1.366 2.887 
76 105 5.263 7.377 

76 207 1.785 3.057 

76 217 2.284 4.057 
76 219 4.329 6.609 

76 223 2.157 3.618 

76 304 1.648 3.373 
76 310 3.975 5.438 

77 14 1.228 2.547 

77 16 6.954 8.797 
77 27 1.5 3.61 

77 33 1.182 2.947 

77 35 1.315 6.981 
77 41 1.501 2.294 

77 42 0.98 2.559 

77 62 1.348 2.911 
77 65 2.206 3.769 

77 69 1.946 3.095 
77 70 1.094 2.622 

77 72 1.608 3.754 

77 76 1.056 4.142 
77 105 2.391 4.796 

77 204 2.822 4.932 

77 207 1.209 2.516 
77 210 1.257 2.559 

77 217 1.286 3.145 

77 219 0.848 2.307 
77 223 0.976 2.695 

77 224 1.321 2.572 

77 231 1.716 4.428 
77 303 1.784 2.886 

77 304 1.237 2.905 

77 308 1.753 5.259 
77 310 1.223 2.335 

77 320 1.457 5.562 

77 322 0.917 3.016 

77 401 5.756 7.034 

78 14 0.985 2.531 

78 27 1.25 2.094 

78 33 0.75 1.656 

75 33 1.724 2.853 
75 35 5.608 9.436 

75 41 3.093 4.296 

75 42 2.156 3.39 
75 62 2.562 7.702 

75 65 2.859 4.108 

75 69 3.265 5.873 
75 70 1.353 2.482 

75 72 1.531 5.14 

75 87 1.753 2.898 
75 92 3.187 5.702 

75 95 1.075 3.024 

75 105 9.357 11.935 
75 204 3.797 6.562 

75 207 1.611 2.563 

75 210 4.187 6.515 
75 219 1.649 2.942 

75 231 8.092 11.061 

75 303 1.921 4.452 

75 304 1.173 2.243 

75 319 5.764 12.497 

75 322 2.511 4.903 
76 27 2.71 4.852 

76 33 8.088 9.412 

76 35 4.12 7.685 
76 41 1.252 2.549 

76 42 2.217 3.68 
76 62 3.618 5.761 

76 65 2.202 3.514 

76 69 2.172 3.846 
76 70 2.203 3.744 

76 72 1.433 2.956 

76 87 2.572 4.498 
76 92 5.834 8.658 

76 95 1.366 2.887 

76 105 5.263 7.377 

76 207 1.785 3.057 

76 217 2.284 4.057 

76 219 4.329 6.609 
76 223 2.157 3.618 

76 304 1.648 3.373 

76 310 3.975 5.438 
77 14 1.228 2.547 

77 16 6.954 8.797 

77 27 1.5 3.61 
77 33 1.182 2.947 

77 35 1.315 6.981 

77 41 1.501 2.294 
77 42 0.98 2.559 

77 62 1.348 2.911 

77 65 2.206 3.769 
77 69 1.946 3.095 

77 70 1.094 2.622 

77 72 1.608 3.754 
77 76 1.056 4.142 

77 105 2.391 4.796 

77 204 2.822 4.932 
77 207 1.209 2.516 

77 210 1.257 2.559 

77 217 1.286 3.145 
77 219 0.848 2.307 

77 223 0.976 2.695 

77 224 1.321 2.572 
77 231 1.716 4.428 

77 303 1.784 2.886 

77 304 1.237 2.905 
77 308 1.753 5.259 

77 310 1.223 2.335 

77 320 1.457 5.562 
77 322 0.917 3.016 

77 401 5.756 7.034 

78 14 0.985 2.531 
78 27 1.25 2.094 

78 33 0.75 1.656 
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78 35 1.625 5.968 

78 42 0.891 1.797 

78 62 1.843 3.703 

78 69 0.875 1.828 

78 70 0.843 1.671 
78 72 1.328 2.25 

78 92 3.328 4.625 

78 95 0.891 2.75 
78 105 4.843 9.203 

78 204 1.422 2.75 

78 207 0.938 1.704 
78 210 1.015 2.062 

78 223 1.094 2.015 

78 303 1.203 2.125 
78 304 0.875 1.812 

78 308 2.047 4.156 

78 310 1.531 2.5 
78 319 6.469 9.594 

78 322 1.11 3.969 

78 401 3.015 4.125 
79 14 1.296 2.654 

79 16 1.738 4.89 

79 27 1.273 3.338 
79 33 0.765 1.748 

79 35 1.703 8.156 

79 41 1.217 2.404 
79 42 1.496 2.946 

79 65 1.699 3.491 

79 69 0.92 2.759 
79 70 1.155 3.216 

79 72 1.215 3.133 

79 87 1.467 2.529 
79 92 1.593 5.062 

79 95 2.296 3.296 

79 105 2.281 19.281 
79 204 3.819 5.76 

79 207 1.53 2.624 

79 210 0.947 4.238 
79 217 1.434 3.851 

79 219 1.03 2.17 

79 223 1.263 2.713 
79 231 5.234 8.656 

79 303 1.045 3.788 

79 304 0.889 2.404 
79 310 2.92 5.215 

79 322 1.14 2.514 

79 401 1.422 4.14 
7001 14 1.688 2.803 

7001 16 2.088 3.302 

7001 27 1.748 2.592 
7001 33 2.71 3.918 

7001 35 3.815 6.716 
7001 41 1.286 2.48 

7001 42 1.011 2.159 

7001 62 1.762 2.962 
7001 65 1.194 2.097 

7001 69 1.47 2.786 

7001 70 1.811 2.725 
7001 72 1.041 2.173 

7001 87 2.389 3.413 

7001 92 2.807 4.5 
7001 105 3.895 5.628 

7001 204 1.718 3.05 

7001 207 2.276 3.706 
7001 210 2.355 3.54 

7001 217 2.082 2.97 

7001 219 1.471 2.555 
7001 223 1.378 2.418 

7001 231 4.002 5.506 

7001 303 1.209 2.541 

7001 304 1.416 2.304 

7001 308 1.639 2.982 

7001 310 3.175 5.73 
7001 319 2.928 4.888 

7001 320 1.303 2.562 

7001 322 2.529 4.188 

7001 401 2.78 4.083 

7002 14 0.903 1.729 

7002 16 3.286 8.184 

7002 27 1.134 2.535 
7002 33 0.887 1.947 

7002 35 2.278 5.611 

7002 41 0.887 1.656 
7002 42 1.268 2.269 

7002 62 0.747 1.534 

7002 65 1.562 2.522 
7002 69 0.99 2.187 

7002 70 0.887 1.729 

7002 76 1.478 2.572 
7002 87 0.719 1.621 

7002 92 5.843 7.145 

7002 105 1.015 2.029 
7002 204 1.282 2.323 

7002 207 0.665 1.611 

7002 210 0.92 2.001 
7002 217 1.212 2.129 

7002 219 0.933 1.912 

7002 224 0.734 1.851 
7002 231 2.242 4.124 

7002 303 0.887 2.01 

7002 304 0.734 1.775 
7002 308 1.481 2.548 

7002 310 0.813 1.715 

7002 320 1.626 2.852 
7002 322 0.995 1.974 

 
Group 7, image complexity 3: 

 
S # I # T2mark T2next 

70 61 3.328 5.109 

70 88 3.235 4.969 

70 96 4.312 5.843 
70 102 4.766 6.391 

70 104 2.563 3.907 

70 109 1.75 3.218 
70 309 2.562 3.781 

70 312 1.609 3.468 

70 313 4.469 5.938 
70 324 1.687 2.812 

70 325 1.594 2.781 

70 402 2.985 5.578 
70 403 2.188 3.438 

70 404 2.031 3.484 

70 406 2.234 4.109 
71 61 1.187 4.953 

71 88 1.297 6.749 
71 96 4.374 7.217 

71 102 1.062 4.841 

71 104 1.484 2.562 
71 109 1.421 3.249 

71 201 2.61 4.875 

71 227 1.406 3.796 
71 309 5.656 8.843 

71 312 0.985 2.906 

71 313 2.89 8.67 
71 324 1.734 4.5 

71 325 0.969 2.359 

71 327 3.046 4.53 
71 402 8.982 10.498 

71 403 2.359 5.093 

71 406 1.672 3.515 
72 61 1.119 1.85 

72 88 0.914 1.967 

72 96 0.991 3.36 

72 102 2.391 6.079 

72 104 3.567 4.719 

72 227 1.58 2.804 
72 309 1.223 2.679 

72 312 0.996 1.868 

72 313 1.843 4.863 

72 324 2.177 3.25 

72 325 1.028 1.916 

72 403 1.137 3.037 

72 406 1.368 2.784 
73 61 1.157 1.969 

73 88 1.593 2.468 

73 96 2.078 3.344 
73 102 4 5.234 

73 201 1.593 2.39 

73 227 1.297 2.187 
73 309 1.891 2.75 

73 312 1.562 2.906 

73 324 1.61 2.532 
73 325 1.704 2.375 

73 327 5.234 6.421 

73 402 1.922 3.062 
73 403 1.515 2.359 

74 61 3.066 4.314 

74 88 2.124 5.859 
74 96 1.703 6.046 

74 102 4.015 6.578 

74 104 2.296 3.775 
74 109 3.405 5.299 

74 201 1.648 3.342 

74 227 1.578 4.765 
74 309 1.781 4.64 

74 312 1.197 3.218 

74 313 3.5 8.188 
74 324 2.634 4.205 

74 325 1.555 3.202 

74 327 3.672 5.562 
74 402 1.703 7.891 

74 403 1.679 3.235 

75 61 2.124 3.296 
75 88 6.186 7.951 

75 96 5.202 6.827 

75 102 6.342 10.404 
75 109 2.312 4.062 

75 201 2.243 3.462 

75 227 1.718 4.749 
75 312 1.501 3.136 

75 313 8.076 10.451 

75 324 2.375 4.187 
75 325 2.021 4.859 

75 402 5.671 11.014 

75 403 1.594 2.844 
76 227 3.675 5.562 

76 312 5.06 6.442 

76 324 3.092 5.415 
76 325 4.098 5.469 

76 403 1.885 3.303 
76 406 2.986 4.253 

77 61 1.778 3.724 

77 88 2.51 7.694 
77 96 1.517 4.03 

77 102 5.287 8.472 

77 104 1.363 3.37 
77 109 1.44 2.743 

77 201 2.187 3.64 

77 227 2.298 5.348 
77 309 3.551 5.021 

77 312 0.974 2.112 

77 313 3.417 6.236 
77 324 1.001 3.114 

77 325 1.633 3.25 

77 327 1.648 6.952 
77 402 2.198 7.873 

77 404 1.251 3.42 

78 61 0.828 1.781 

78 88 1.344 2.485 

78 104 1.219 3.016 

78 109 0.953 1.797 
78 201 1.375 3.39 

78 227 1.344 2.625 
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78 312 1.031 1.891 

78 324 0.875 1.657 

78 325 0.985 1.985 

78 327 3.187 4.406 

78 402 2.25 4.25 
78 403 0.735 1.625 

78 406 1.531 2.406 

79 61 1.013 2.697 
79 88 1.351 4.75 

79 96 1.288 5.914 

79 102 3.578 7.125 
79 104 2.108 4.153 

79 109 0.781 2.685 

79 227 1.179 4.47 
79 312 2.498 4.512 

79 313 4.609 7.906 

79 324 1.419 3.274 
79 325 0.796 2.123 

79 402 1.717 4.107 

79 403 1.218 2.389 
7001 61 1.285 2.158 

7001 88 2.281 3.732 

7001 96 1.926 2.903 
7001 102 3.667 4.902 

7001 104 2.044 3.206 

7001 109 2.128 3.414 
7001 201 1.651 2.512 

7001 227 2.829 4.177 

7001 309 1.925 3.391 
7001 312 1.194 2.179 

7001 313 3.08 4.65 

7001 324 1.24 2.51 
7001 325 1.349 2.575 

7001 327 2.503 3.91 

7001 402 2 3.318 
7001 403 1.255 2.173 

7001 406 1.699 2.709 

7002 61 1.294 2.308 
7002 88 1.948 3.83 

7002 96 1.441 2.482 

7002 102 2.449 7.207 
7002 104 0.825 1.682 

7002 109 0.99 1.995 

7002 201 1.3 2.386 
7002 227 1.775 3.056 

7002 309 2.495 3.983 

7002 312 1.438 2.355 
7002 313 1.708 2.976 

7002 324 1.168 2.291 

7002 325 1.024 1.988 
7002 327 1.481 2.615 

7002 402 2.092 3.58 
7002 404 0.946 1.744 

7002 406 0.857 1.833 

 
Group 8, image complexity 1: 

 
S # I # T2mark T2next 

80 15 2.063 5.609 

80 34 1.406 3.281 

80 47 1.765 5.812 
80 48 1.265 2.937 

80 57 3.187 5.374 

80 63 2.609 5.093 
80 64 1.734 3.937 

80 67 1.281 3.718 

80 68 2.875 4.359 
80 80 1.422 2.734 

80 82 1.407 3.281 

80 97 6.14 7.64 
80 206 1.203 4.531 

80 208 1.187 2.437 

80 221 1.515 3.281 

80 230 1.609 4.265 

80 306 1.985 4.766 

81 6 1.109 3.219 

81 15 1.39 5.5 

81 19 1.281 4.172 

81 26 0.984 2.797 
81 57 1.75 4.984 

81 68 1.563 3.219 

81 77 1.204 3.516 
81 82 1.218 2.531 

81 209 2.547 5.64 

82 6 0.921 3.718 
82 15 3.671 9.265 

82 19 1.312 3.078 

82 26 1.172 2.656 
82 57 1.547 2.938 

82 68 1.406 2.406 

82 77 1.766 3.328 
82 82 1.141 2.891 

82 209 1.172 2.906 

82 306 1.125 3.125 
83 6 2.391 9.344 

83 15 1.75 6.094 

83 19 1.422 5.656 
83 26 1.391 4.516 

83 48 2.796 4.062 

83 57 3.782 5.953 
83 68 2.078 6.406 

83 77 2.719 5.594 

83 82 3.515 6.234 
83 306 4.047 11.594 

84 6 2.406 5.321 

84 15 1.508 4.603 
84 19 1.928 3.686 

84 26 2.16 7.552 

84 57 6.53 8.187 
84 68 1.938 4.672 

84 77 1.404 3.535 

84 82 2.11 5.033 
84 209 2.395 4.942 

85 15 1.012 1.42 

85 26 1.405 1.853 
85 57 4.124 4.827 

85 68 2.171 2.859 

85 77 1.299 1.933 
85 82 4.968 5.687 

85 209 1.313 2.172 

85 306 2.515 3.187 
86 15 1.108 1.826 

86 19 1.42 3.262 

86 26 1.143 2.081 
86 57 1.535 2.734 

86 68 0.826 1.87 
86 77 1.436 2.31 

86 82 0.95 1.979 

86 209 0.857 2.088 
86 306 1.761 3.397 

87 15 1.239 2.522 

87 19 1.224 2.371 
87 48 1.427 2.502 

87 67 1.366 2.748 

87 68 1.029 2.417 
87 77 1.388 2.985 

87 80 1.535 2.717 

87 82 1.268 2.462 
87 97 1.164 2.388 

87 111 1.264 3.05 

87 208 0.853 2.155 
87 209 1.104 2.506 

87 211 0.853 1.829 

87 230 1.253 2.238 

87 306 1.314 2.567 

87 411 1.704 3.985 

88 6 2.469 4.422 
88 15 3.359 5.625 

88 19 2.046 6.89 

88 57 2.813 4.875 

88 68 2.406 7.234 

88 77 4.562 6.937 
88 82 2.797 5.735 

88 209 3.468 5.828 

89 6 1.562 3.546 
89 15 2.218 4.046 

89 19 1.172 3 

89 26 1.397 2.592 
89 57 1.406 3.813 

89 68 1.609 4.515 

89 77 1.532 4.235 
89 82 1.531 3.39 

89 209 2.891 6.172 

8001 15 1.385 3.618 
8001 19 1.107 3.832 

8001 48 0.878 1.876 

8001 67 1.848 2.779 
8001 68 1.939 3.633 

8001 82 1.74 3.187 

8001 97 2.017 3.31 
8001 208 0.823 2.672 

8001 209 2.233 4.188 

8001 211 0.985 1.889 
8002 15 1.593 2.703 

8002 19 1.188 2.609 

8002 26 1.078 2.421 
8002 57 4.094 6.047 

8002 68 1.062 2.656 

8002 77 1.094 2.75 
8002 82 1.172 2.391 

8002 209 1.344 3.516 

 
Group 8, image complexity 2: 

 
S # I # T2mark T2next 

80 27 1.641 3.828 

80 33 1.328 3.031 
80 41 4.344 6.375 

80 69 1.016 5.828 

80 83 1.344 3.547 
80 95 1.547 4.484 

80 105 1.407 4.875 

80 217 1.687 4.249 
80 231 6.406 8.874 

80 303 2.437 4.593 

80 304 1.015 4.796 
80 308 2.39 4.609 

80 310 2.374 3.874 

80 319 7.031 8.656 
81 27 2.719 4.656 

81 33 1.359 2.89 

81 41 1.688 6.032 
81 42 1.203 2.328 

81 62 1.437 3.968 

81 72 1.063 3.547 
81 83 0.937 3.484 

81 87 1.515 2.594 

81 92 1.531 4.531 
81 95 1.281 2.765 

81 204 2.344 5.391 

81 207 0.907 2.016 
81 210 1.375 2.812 

81 223 0.985 2.766 
81 224 1.875 3 

81 310 4.969 6.859 

81 320 1.828 3.031 
81 322 2.063 3.906 

81 401 1.266 7.109 

82 14 1.312 3.328 
82 16 7.687 9.172 

82 33 0.719 2.656 

82 42 1.516 3 

82 62 1.125 3.234 
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82 69 1.047 2.844 

82 83 1.391 2.61 

82 92 10.641 12.172 
82 95 1.25 2 

82 204 1.172 3.687 

82 207 1.422 2.391 
82 210 1.25 2.437 

82 217 2.968 4.297 

82 223 2.985 7.141 
82 224 2.375 3.468 

82 310 1.875 3.25 

82 322 1.813 3.329 
83 14 2.593 10.921 

83 27 3.093 8.39 

83 33 3.5 5.078 
83 41 6.797 9.687 

83 42 5.359 7.219 

83 62 2.937 9.578 
83 69 1.985 4.953 

83 72 7 8.454 

83 83 1.375 2.734 
83 87 1.922 3.937 

83 92 13.485 15.11 

83 95 2.156 3.375 
83 204 2.406 13.343 

83 207 1.922 4.11 

83 217 5.265 7.906 
83 223 2.562 5.297 

83 224 1.969 6.062 

83 310 4.312 5.921 
83 320 5.516 8.515 

83 322 5.062 8.546 

83 401 5.062 11.922 
84 14 2.192 4.121 

84 27 3.119 7.247 

84 33 2.24 4.044 

84 41 2.69 3.841 

84 42 1.82 4.257 

84 62 2.078 4.874 
84 69 1.743 4.025 

84 72 3.995 6.354 
84 83 1.431 2.904 

84 87 2.504 3.903 

84 92 14.155 15.545 
84 204 3.188 7.109 

84 207 1.545 2.718 

84 210 2.14 12.416 
84 217 3.008 5.075 

84 223 1.867 3.671 

84 224 2.535 3.857 
84 310 2.037 3.903 

84 320 4.52 7.081 

84 322 1.835 3.188 

84 401 5.859 7.469 

85 14 1.193 1.767 

85 16 3.281 3.89 
85 27 1.516 2.328 

85 33 1.194 1.994 

85 41 1.239 1.783 
85 42 1.209 1.873 

85 62 5.687 6.625 

85 69 1.297 2.094 
85 72 1.118 1.737 

85 83 1.497 2.068 

85 92 2.406 3.859 
85 204 2.485 3.328 

85 207 0.942 1.606 

85 210 1.094 1.734 
85 217 1.656 2.265 

85 223 1.078 1.75 

85 224 1.677 2.266 
85 310 2.024 2.628 

85 322 1.636 2.254 

85 401 4.297 5.172 

86 14 1.701 2.56 

86 16 2.384 4.348 

86 27 1.449 2.384 

86 33 0.984 1.905 

86 41 2.341 2.888 

86 42 0.968 1.811 
86 62 1.163 2.341 

86 69 1.122 1.917 

86 72 2.201 3.153 
86 83 1.583 2.594 

86 87 2.077 3.202 

86 92 2.822 8.266 
86 95 2.99 4.235 

86 204 2.151 3.335 

86 207 0.909 2.184 
86 210 1.418 2.79 

86 223 0.982 1.745 

86 224 1.358 2.201 
86 308 7.645 8.762 

86 310 2.216 3.2 

86 320 3.943 4.955 
86 322 1.561 2.858 

86 401 3.148 11.29 

87 16 8.065 9.26 
87 33 0.906 2.118 

87 76 1.412 2.609 

87 92 4.273 6.581 
87 204 1.522 2.88 

87 210 1.704 2.872 

87 224 1.117 2.359 
87 231 3.552 4.805 

87 308 1.94 3.074 

87 401 3.572 5.276 
88 16 12.922 14.828 

88 27 2.422 5.25 

88 33 1.875 4.5 
88 42 1.703 4.078 

88 62 2.547 6.094 

88 69 2.563 4.391 
88 83 1.828 3.594 

88 87 1.578 3.234 

88 92 7.406 8.906 
88 95 2.282 4 

88 204 6.532 8.516 

88 207 8.75 10.594 
88 217 3.485 6.172 

88 223 5.031 6.75 

88 224 2.125 4.391 
88 308 8.39 10.515 

88 320 2.954 4.891 

88 322 2.016 4.172 
89 14 1.688 3.781 

89 16 4.516 7.828 
89 27 1.5 3.765 

89 33 1.594 3.063 

89 42 1.469 3.594 
89 62 2.234 5.062 

89 69 2.281 5.281 

89 72 2.547 3.938 
89 83 1.567 5.323 

89 87 1.719 2.828 

89 92 3.078 4.203 
89 95 2.111 3.352 

89 204 2.547 4.453 

89 207 1.599 2.732 
89 210 2.906 5.469 

89 223 1.469 4.578 

89 224 1.187 2.281 
89 310 3.266 4.813 

89 401 2.718 3.984 

8001 33 1.039 2.065 

8001 72 2.894 4.11 

8001 76 1.164 2.452 

8001 92 1.792 15.808 
8001 204 1.656 7.604 

8001 210 1.099 4.637 

8001 224 0.85 1.754 
8001 231 2.032 4.511 

8001 308 3.495 5.804 

8002 16 10.875 13.172 
8002 27 1.485 2.735 

8002 33 1.062 3.171 

8002 42 1.187 2.015 
8002 62 1.281 2.953 

8002 65 1.25 2.203 

8002 69 1.265 2.734 
8002 72 2.188 3.563 

8002 87 2.188 3.375 

8002 92 2.015 3.828 
8002 95 1.094 2.453 

8002 204 1.203 3.094 

8002 207 1.672 3.266 
8002 210 1.735 2.907 

8002 223 0.703 1.672 

8002 224 1.343 2.531 

8002 308 1.172 4.015 

8002 310 1.078 2.812 

8002 320 1.641 2.735 
8002 322 2.062 3.172 

8002 401 3.875 5.422 

 
Group 8, image complexity 3: 

 
S # I # T2mark T2next 

80 61 1.578 3.953 

80 88 2.359 5.921 
80 201 2.359 4.78 

80 313 3.265 7.077 

80 402 6.328 8.249 
80 406 1.891 3.875 

81 88 2.796 4.093 

81 96 2.546 5.327 
81 201 3.828 5.953 

81 312 4.86 6.016 

81 324 1.234 3.5 
82 88 2.015 3.875 

82 312 1.094 2.344 

82 324 1.547 3.985 
83 88 2.968 10.109 

83 201 3.312 7.015 

83 312 2.359 6.14 
83 324 1.437 3.875 

83 403 1.297 5.344 

84 88 3.661 8.965 
84 96 2.657 5.031 

84 312 2.995 7.222 
84 324 2.021 5.399 

85 88 3.234 4.14 

85 96 3.125 4.047 
85 201 2.501 3.257 

85 312 1.821 2.423 

85 324 0.831 1.45 
85 403 1.133 1.738 

86 88 1.246 2.228 

86 96 2.451 4.327 
86 312 1.218 2.031 

86 324 1.046 2.107 

86 403 1.077 2.903 
87 88 3.422 5.771 

87 327 6.004 7.612 

87 402 2.528 5.262 
87 403 1.03 2.373 

88 88 4.891 7.156 

88 96 4.515 6.562 

88 312 2.516 4.172 

88 324 2.203 3.859 

88 403 2 4.156 
89 88 2.203 5.469 

89 96 2.735 4.282 

89 312 2.078 3.187 
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89 324 2.14 3.359 

89 403 2.969 5.781 

8001 61 1.474 2.622 

8001 102 3.252 6.594 

8001 309 3.077 14.298 
8001 403 3.356 4.557 

8002 88 3.14 4.781 

8002 96 3.812 4.765 
8002 201 3.125 5.579 

8002 312 2.468 4.234 

8002 324 1.125 2.203 

 
Group 9, image complexity 1: 

 
S # I # T2mark T2next 

90 6 1.093 2.015 

90 7 1.11 2.719 

90 15 1.093 1.937 

90 19 0.703 1.5 

90 26 0.734 2.218 
90 46 0.968 1.89 

90 47 1.031 2.172 

90 48 0.859 1.625 
90 54 1.562 2.625 

90 57 1.484 2.594 
90 63 0.906 2.156 

90 64 1.094 1.969 

90 67 0.735 1.594 
90 68 0.703 2.266 

90 80 1.172 1.953 

90 82 0.984 1.843 
90 97 1.281 7.859 

90 206 0.922 2.031 

90 208 0.547 1.578 

90 209 1.11 3.125 

90 211 0.719 1.625 

90 220 1.171 2.406 
90 221 1.328 2.453 

90 230 1.453 2.562 

90 306 5.234 6.359 
90 307 0.906 1.922 

90 411 1.015 2.453 

91 6 1.817 5.622 
91 7 1.802 5.884 

91 15 1.288 3.011 

91 19 1.66 3.6 
91 46 1.869 4.07 

91 47 1.325 3.173 

91 48 1.522 3.483 
91 54 2.85 5.111 

91 57 4.223 5.668 

91 63 1.779 4.809 
91 64 3.634 7.026 

91 67 2.483 3.964 

91 68 2.792 6.689 
91 80 1.302 2.633 

91 82 1.553 5.051 

91 97 2.578 7.329 
91 206 2.065 6.92 

91 208 1.193 3.237 

91 209 2.02 4.282 
91 211 1.495 3.388 

91 220 1.257 2.887 

91 221 1.632 4.512 
91 230 4.128 5.622 

91 411 2.366 9.594 

92 15 0.953 2.594 
92 19 1.109 2.812 

92 26 0.703 2.844 

92 46 0.844 2.281 
92 47 0.921 2.093 

92 48 0.641 1.703 

92 54 1 2.375 

92 57 1.578 3.921 

92 63 0.86 2.297 

92 64 0.984 2.969 

92 67 0.687 2.047 

92 68 0.844 2.235 

92 80 0.828 2.25 
92 82 0.906 2.688 

92 97 1.266 2.953 

92 206 1.047 2.359 
92 208 0.593 1.968 

92 209 1 2.406 

92 211 0.593 1.75 
92 220 1.078 2.594 

92 221 0.89 2.843 

92 230 1.078 2.61 
92 306 1.032 4.735 

92 307 1.062 3.453 

92 411 1.75 4.484 
93 6 1.704 4.875 

93 7 2.094 6.235 

93 15 1.297 2.938 
93 19 1.609 3.406 

93 26 1.078 3.218 

93 46 1.609 4 
93 47 1.938 3.641 

93 48 1.219 2.969 

93 54 1.578 3.532 
93 57 3.078 5.64 

93 63 1.828 4.578 

93 64 9.125 11.219 
93 67 1.265 3.078 

93 68 2.047 4.609 

93 80 1.391 3.203 
93 82 1.547 3.297 

93 97 3.016 6.906 

93 206 1.844 7.406 
93 208 1.141 2.672 

93 209 1.875 5.328 

93 211 1.484 3.375 
93 220 2.578 4.484 

93 221 1.891 3.641 

93 230 2.234 5.359 
93 306 1.547 4.812 

93 307 1.844 3.235 

93 411 4.172 6.875 
94 6 2.141 2.984 

94 15 0.789 1.887 

94 19 1.856 2.475 
94 26 0.919 2.569 

94 46 1 1.828 

94 47 0.819 2.227 
94 48 0.716 1.743 

94 54 0.453 1.437 
94 57 1.094 2.719 

94 63 2.437 3.515 

94 64 1.14 1.984 
94 67 0.881 2.521 

94 68 0.64 1.547 

94 80 0.866 1.562 
94 82 0.531 1.453 

94 97 1.563 5.344 

94 206 1.172 2.141 
94 208 1.206 2.042 

94 209 1.094 2.203 

94 211 0.835 2.042 
94 220 0.929 1.779 

94 221 1.121 2.289 

94 230 1.031 2.156 
94 306 1.125 2.078 

94 307 1.748 2.847 

94 411 1.656 2.89 

95 6 1.439 3.988 

95 7 2.383 5.588 

95 15 1.35 3.274 
95 19 0.825 2.324 

95 26 0.876 1.89 

95 34 1.109 3.628 

95 46 6.158 11.811 

95 47 1.14 3.658 

95 48 0.959 2.788 

95 57 1.976 3.416 
95 63 1.116 2.789 

95 64 4.835 6.104 

95 68 6.572 9.1 
95 77 1.533 4.347 

95 82 16.223 18.643 

95 97 1.287 3.202 
95 111 5.469 7.016 

95 206 0.906 1.951 

95 209 1.177 2.401 
95 211 0.72 2.189 

95 220 1.84 3.191 

95 221 1.649 3.538 
95 306 2.137 4.523 

95 307 1.686 3.26 

95 411 12.899 15.948 
96 6 1.063 2.673 

96 7 1.397 3.828 

96 15 1.655 3.063 
96 19 1.299 3.31 

96 26 1.121 5.06 

96 46 0.969 2.828 
96 47 1.207 2.553 

96 48 1.058 3.394 

96 54 1.58 2.825 
96 57 1.578 3.812 

96 63 1.391 2.906 

96 64 1.2 2.4 
96 67 1.121 3.3 

96 68 1.188 2.688 

96 80 1.09 2.989 
96 82 1.469 3.672 

96 97 2.313 8.219 

96 206 0.957 2.051 
96 208 1.083 2.599 

96 209 1.406 3.609 

96 211 1.261 2.74 
96 220 1.578 4.099 

96 221 1.386 3.223 

96 230 2.051 3.479 
96 306 1.922 3.359 

96 307 1.443 4.511 

96 411 1.25 3.797 
97 6 2.205 3.441 

97 7 2.756 3.84 

97 15 1.867 3.274 
97 19 1.264 2.346 

97 26 1.924 7.11 
97 34 2.613 3.708 

97 46 1.781 8.556 

97 47 1.602 3.849 
97 48 1.095 2.177 

97 57 1.997 3.743 

97 63 1.494 3.048 
97 64 1.423 2.968 

97 68 2.45 9.708 

97 82 2.517 11.569 
97 97 1.915 4.459 

97 206 2.234 5.799 

97 209 1.908 3.062 
97 211 1.335 2.571 

97 221 1.63 2.838 

97 306 1.928 3.014 
97 307 3.087 5.072 

97 411 2.798 5.315 

98 6 2.156 5.281 

98 15 1.812 3.406 

98 19 1.203 2.485 

98 26 1.703 4.016 
98 34 2.235 4.11 

98 46 2.532 5.172 
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98 47 1.578 2.922 

98 48 1.125 2.593 

98 54 1.812 4.609 

98 57 2.891 5.578 

98 63 3.297 5.109 
98 64 1.578 4.265 

98 67 1.984 3.469 

98 68 2.61 5.734 
98 80 1.093 2.14 

98 82 1.86 4.219 

98 97 2.484 5.968 
98 206 2.594 4.766 

98 208 1.031 2.422 

98 209 2.203 4.844 
98 220 6.281 7.874 

98 230 2.235 3.797 

98 307 2.109 3.531 
99 6 1.421 2.859 

99 7 1.734 3.843 

99 15 1.686 2.698 
99 19 1.962 3.081 

99 26 4.64 6.177 

99 46 1.672 2.547 
99 47 1.548 2.53 

99 48 1.738 3.026 

99 54 1.609 2.89 
99 57 2.344 4.375 

99 63 3.047 5.625 

99 64 2.187 3.859 
99 67 2.079 3.181 

99 68 2.609 4.89 

99 80 2.701 3.926 
99 82 2.906 4.75 

99 97 5.359 8.593 

99 206 1.172 2.531 
99 208 2.023 2.943 

99 209 1.703 3.156 

99 211 0.947 1.63 
99 220 1.426 2.576 

99 221 1.769 2.964 

99 230 1.64 3 
99 306 1.953 3.156 

99 307 1.226 2.437 

99 411 2.672 4.563 
9001 6 0.953 2.656 

9001 15 1.11 2.844 

9001 19 1.422 2.984 
9001 26 1.219 2.562 

9001 47 1.515 3.187 

9001 48 1.234 2.406 
9001 54 0.89 2.359 

9001 63 1.64 3.5 
9001 64 1.391 2.86 

9001 67 1.016 2.797 

9001 68 1.469 4.875 
9001 80 1.532 3.141 

9001 97 1.5 6.453 

9001 206 1.265 2.953 
9001 208 0.766 2.704 

9001 211 1.062 2.625 

9001 220 1.703 3.156 
9001 221 1.187 2.453 

9001 230 1.375 2.812 

9001 307 1.281 4.547 
9002 6 1.812 5.671 

9002 7 2.391 5.188 

9002 15 1.609 3.5 
9002 19 1.391 3.25 

9002 26 1.204 3.703 

9002 46 1.265 4.312 

9002 47 1.313 2.937 

9002 48 1.5 3.219 

9002 54 1.766 3.156 
9002 57 1.547 4.203 

9002 63 1.859 4.281 

9002 64 1.515 5.093 

9002 67 2.063 3.625 

9002 68 2.109 4.093 

9002 80 1.547 3.406 

9002 82 2.016 3.985 
9002 97 2.469 6.765 

9002 206 2.125 4.172 

9002 208 1.625 3.703 
9002 209 1.781 4.047 

9002 211 1.265 6.75 

9002 220 2.047 3.922 
9002 221 1.453 3.562 

9002 230 2.218 4.703 

9002 307 1.89 5.124 
9002 411 2.828 7.047 

 
Group 9, image complexity 2: 

 
S # I # T2mark T2next 

90 14 1.312 2.312 
90 16 2.625 4.203 

90 27 1.219 2.235 

90 33 0.765 1.562 
90 35 5.25 7.047 

90 41 1 1.75 
90 42 1.14 1.953 

90 62 0.735 1.703 

90 70 1.125 2.39 
90 87 2.687 3.562 

90 92 1.5 3.047 

90 95 2.391 3.625 
90 105 3.797 7.297 

90 204 1.344 2.516 

90 207 0.687 2.015 

90 210 1.031 2.687 

90 219 0.781 1.796 

90 223 0.938 2 
90 231 2.766 7.344 

90 303 1.125 2.469 

90 304 0.797 1.672 
90 319 3.063 6.672 

90 320 1.406 2.656 

90 322 1.094 2.032 
90 401 2.375 3.672 

91 14 1.92 4.114 

91 16 5.925 10.81 
91 27 2.201 4.101 

91 33 1.399 4.512 

91 35 5.877 12.062 
91 41 1.35 2.592 

91 42 1.602 5.622 

91 62 3.444 5.825 
91 69 3.481 5.083 

91 70 1.676 4.361 

91 72 3.111 4.436 
91 87 1.289 2.674 

91 92 2.205 7.562 

91 105 8.946 18.432 
91 204 2.664 5.966 

91 210 1.824 2.985 

91 217 1.787 4.421 
91 219 1.577 3.662 

91 223 2.433 5.037 

91 231 4.86 8.292 
91 303 1.878 3.601 

91 304 2.084 3.62 

91 319 4.472 14.379 
91 320 1.553 4.011 

91 322 1.399 4.32 

91 401 7.455 9.297 
92 14 0.859 2.765 

92 16 1.906 4.062 

92 27 1.219 3.079 

92 33 0.687 2.047 

92 35 1.531 3.344 

92 41 0.937 2.484 

92 42 0.907 2.297 

92 62 1.031 3.422 

92 65 1.11 2.5 
92 69 0.891 2.141 

92 70 0.89 2.593 

92 72 3.453 5.235 
92 87 0.922 2.438 

92 92 3.031 4.39 

92 95 0.734 2.343 
92 105 1.281 2.843 

92 204 1.266 3.672 

92 207 0.719 2.203 
92 210 1.016 2.61 

92 217 1.109 2.609 

92 219 0.688 2.359 
92 223 0.922 2.375 

92 303 0.828 2.281 

92 304 0.781 2.39 
92 310 1.125 3.156 

92 319 2.328 3.828 

92 322 0.922 3.063 
92 401 3.172 4.828 

93 14 1.641 3.516 

93 16 6.563 8.36 
93 27 1.765 3.828 

93 33 1.547 3.297 

93 35 3.578 8 
93 41 1.735 3.204 

93 42 1.766 3.078 

93 62 3.593 5.703 
93 65 2.297 6 

93 69 3.297 5.078 

93 70 1.422 3.172 
93 87 3.157 5.25 

93 92 9 10.969 

93 95 1.547 4.937 
93 105 2.063 6.703 

93 204 2.875 6.172 

93 207 1.64 3.297 
93 210 2.156 4.109 

93 217 3.516 5.328 

93 219 1.594 3.875 
93 223 2.281 3.828 

93 231 14.203 16.625 

93 303 3.015 4.343 
93 304 1.359 2.687 

93 319 12.11 13.641 

93 322 2.219 4.875 
93 401 7.765 9.593 

94 14 1.609 2.414 
94 27 1.063 2.109 

94 33 0.68 1.485 

94 35 4.718 7.093 
94 41 0.851 1.779 

94 42 0.82 1.763 

94 62 1.203 3.407 
94 65 0.735 2 

94 69 0.703 1.359 

94 70 0.728 1.64 
94 72 0.61 1.188 

94 87 0.696 1.237 

94 92 1.656 3.281 
94 105 2.562 5.781 

94 204 1.469 2.578 

94 207 0.934 1.899 
94 210 0.891 2.047 

94 217 0.843 1.484 

94 219 2.073 3.559 

94 223 0.906 1.703 

94 231 3.749 5.031 

94 303 1.161 2.445 
94 304 0.638 1.51 

94 308 1.562 4.406 
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94 310 1.918 2.955 

94 320 0.891 1.766 

94 322 1.098 2.367 

94 401 1.343 3.515 

95 14 0.968 2.29 
95 16 2.436 3.616 

95 27 3.432 4.703 

95 33 1.229 2.699 
95 35 4.886 6.189 

95 41 1.394 2.519 

95 42 1.184 2.215 
95 62 1.163 2.746 

95 69 0.975 2.034 

95 70 0.795 1.719 
95 76 1.739 5.742 

95 87 3.073 4.077 

95 92 2.574 4.075 
95 105 1.843 3.872 

95 204 1.487 3.082 

95 207 0.974 2.278 
95 210 1.599 4.221 

95 219 0.885 2.114 

95 223 2.021 3.108 
95 224 0.96 1.994 

95 231 4.492 8.427 

95 303 1.421 3.595 
95 304 1.17 2.489 

95 308 0.96 2.014 

95 320 2.327 5.769 
95 322 1.154 2.308 

96 14 1.454 2.862 

96 16 6.765 11.5 
96 27 1.218 3.749 

96 33 1.16 4.811 

96 35 3.078 7.562 
96 41 2.398 4.177 

96 42 1.368 3.859 

96 62 1.5 3.156 
96 65 1.686 3.296 

96 69 1.23 3.357 

96 70 0.959 2.645 
96 72 1.503 3.19 

96 87 4.733 9.389 

96 92 5.391 7.141 
96 95 1.432 3.02 

96 105 2.36 7.781 

96 204 2.374 4.968 
96 207 1.494 3.736 

96 210 1.216 3.707 

96 217 1.929 3.251 
96 219 1.16 3.279 

96 223 1.23 2.749 
96 231 5.296 9.937 

96 303 2.119 5.058 

96 304 1.37 2.942 
96 319 4.266 9.984 

96 322 5.584 8.368 

96 401 2.828 4.969 
97 14 1.549 2.571 

97 16 1.62 5.717 

97 27 3.003 4.009 
97 33 2.641 4.636 

97 35 1.339 4.231 

97 41 2.557 3.779 
97 42 1.515 2.968 

97 62 1.79 2.831 

97 65 2.417 4.835 
97 69 4.254 5.769 

97 70 1.579 2.556 

97 87 1.684 2.736 

97 105 3.611 6.519 

97 204 2.367 3.521 

97 207 1.587 3.202 
97 210 1.775 3.091 

97 217 2.246 3.469 

97 219 1.63 2.599 

97 223 2.353 5.388 

97 224 1.475 2.388 

97 303 3.189 4.335 

97 304 1.32 2.5 
97 310 1.404 2.57 

97 322 1.924 3.067 

98 16 4.781 7.203 
98 27 3.672 7.688 

98 33 1.656 3.953 

98 41 1.735 3.516 
98 42 2.218 4.39 

98 62 3.969 6.797 

98 69 1.641 4.079 
98 70 1.281 3.187 

98 72 1.938 3.61 

98 76 1.781 3.719 
98 83 1.047 2.531 

98 95 1.219 2.906 

98 105 4.375 7.485 
98 204 4.094 6.688 

98 207 1.485 2.875 

98 210 1.734 4.063 
98 217 2.687 3.984 

98 219 1.344 3.125 

98 223 1.656 4.203 
98 224 1.297 3.234 

98 231 2.578 6.031 

98 303 3.109 6.234 
98 304 1.313 2.297 

98 308 4.672 6 

98 319 3.141 4.75 
98 322 1.485 2.797 

98 401 4 5.078 

99 27 1.828 3.844 
99 33 1.947 2.852 

99 35 3.547 6.469 

99 41 1.487 2.668 
99 42 1.272 2.361 

99 65 1.375 2.578 

99 69 2.031 3.25 
99 70 2.759 5.335 

99 72 1.063 2.25 

99 87 2.499 3.588 
99 95 3.538 4.655 

99 105 3.64 6.25 

99 204 2.593 3.937 
99 207 1.567 2.653 

99 210 7.422 11.031 

99 219 2.116 3.189 
99 223 1.89 3.14 

99 304 1.676 2.839 
99 310 2.238 4.017 

99 319 4.656 6.531 

99 320 1.812 3.218 
99 322 1.536 2.809 

99 401 3.156 5.203 

9001 14 1.031 2.406 
9001 27 1.39 3.875 

9001 33 1.234 2.734 

9001 41 2.016 3.5 
9001 65 1.609 3.547 

9001 72 1.015 2.515 

9001 87 2.11 3.969 
9001 95 1.734 3.453 

9001 105 5.296 7.796 

9001 207 1.36 2.61 
9001 210 3.593 5.343 

9001 217 1.157 2.719 

9001 219 1.188 3.125 

9001 223 1.157 2.86 

9001 303 1.375 3.187 

9001 304 1.016 2.469 
9001 320 1.016 3.156 

9001 322 1.313 3.485 

9001 401 1.125 5.593 

9002 14 1.922 4.453 

9002 16 2.812 8.89 

9002 27 1.922 4.421 

9002 33 1.344 3.656 
9002 35 5.688 8.125 

9002 41 4.781 6.64 

9002 42 1.641 5.485 
9002 62 1.938 3.344 

9002 65 3 4.485 

9002 69 2.25 4.75 
9002 70 1.515 6.624 

9002 72 1.625 4.89 

9002 87 1.562 3.453 
9002 92 3.125 5.812 

9002 95 1.406 3.844 

9002 105 4.687 8.421 
9002 207 1.485 3.282 

9002 210 1.797 4.219 

9002 219 1.781 5.469 
9002 223 1.515 6.25 

9002 231 4.812 8.546 

9002 303 15.25 17.359 
9002 304 1.859 3.422 

9002 308 8.234 12.891 

9002 310 1.39 3.781 
9002 319 8.359 12.593 

9002 320 2.062 4.047 

9002 322 2.422 5.875 
9002 401 4.766 7.61 

 
Group 9, image complexity 3: 

 
S # I # T2mark T2next 

90 88 1.656 2.781 

90 96 1.797 2.828 

90 102 1.766 5.094 
90 104 1.75 2.703 

90 109 1.046 2.156 

90 201 1.14 2.328 
90 227 1.14 2.328 

90 312 0.891 1.938 

90 324 3.766 4.922 
90 325 1.015 1.984 

90 327 1.031 3.781 

90 402 4.969 6.391 
90 403 1.172 2.469 

90 406 1.953 3.031 

91 61 2.522 5.176 
91 88 2.744 8.548 

91 96 3.387 6.533 

91 102 2.889 6.771 
91 104 1.94 5.183 

91 109 3.135 4.936 

91 201 2.277 3.936 
91 227 1.673 5.261 

91 309 5.653 8.669 

91 312 1.686 3.524 
91 313 2.919 7.156 

91 324 2.557 4.482 

91 325 1.427 4.43 
91 327 1.956 17.176 

91 402 2.013 8.503 

91 403 2.67 4.299 
92 61 0.828 2.313 

92 88 1.281 3.14 

92 96 1.344 2.797 
92 102 2.281 3.703 

92 104 1.11 3.453 

92 109 1.563 3.344 
92 201 1.094 2.609 

92 227 1.172 2.812 

92 309 1.313 3.141 

92 312 0.953 2.547 
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92 313 4.328 5.859 

92 324 0.844 2.344 

92 325 1.016 4.016 

92 327 2.296 5.124 

92 402 1.328 3.047 
92 403 0.797 2.984 

92 406 0.937 2.406 

93 61 2.281 4.015 
93 88 2.703 4.547 

93 96 3.532 5.125 

93 102 4.985 7.203 
93 104 2.812 4.89 

93 109 2.25 4.141 

93 201 2.157 4.031 
93 227 2.015 4.359 

93 309 3.328 5.125 

93 312 1.391 4.531 
93 324 1.734 3.781 

93 325 2.187 3.781 

93 327 2.89 6.546 
93 402 6.891 8.75 

93 403 2.219 4.094 

93 406 3.672 5.531 
94 61 0.773 1.485 

94 88 0.765 1.859 

94 96 1.328 2.953 
94 102 2.469 3.641 

94 104 1.299 2.382 

94 109 1.037 2.476 
94 227 0.922 1.813 

94 309 0.891 1.735 

94 312 0.887 1.744 
94 313 1.735 3.047 

94 324 0.906 1.547 

94 325 0.851 1.485 
94 327 2.188 3.266 

94 402 1.531 2.656 

94 403 1.238 2.939 
94 406 1.609 3.435 

95 88 1.272 2.758 

95 96 2.014 3.424 
95 104 1.999 3.167 

95 109 1.951 3.846 

95 201 1.921 4.32 
95 227 2.633 3.966 

95 309 1.623 5.576 

95 324 3.283 4.363 
95 325 0.922 3.305 

95 327 1.828 2.835 

95 404 1.245 2.624 
96 61 1.454 3.171 

96 88 1.437 2.875 
96 96 1.937 5.265 

96 102 1.766 4.75 

96 104 6.992 8.538 
96 109 1.671 4.161 

96 227 1.5 5.219 

96 309 1.359 3.171 
96 312 1.448 3.736 

96 313 2.359 4.218 

96 324 1.169 2.628 
96 325 1.377 3.604 

96 327 1.5 5.437 

96 402 2.187 5.875 
96 403 1.516 4.068 

96 406 2.278 3.904 

97 61 1.362 2.586 
97 88 8.67 10.712 

97 96 3.106 4.621 

97 102 3.307 5.771 

97 104 6.87 8.704 

97 109 2.923 5.432 

97 227 2.188 3.703 
97 309 2.16 4.439 

97 312 1.669 2.751 

97 313 3.259 4.957 

97 324 2.023 3.161 

97 325 1.488 2.48 

97 327 1.776 4.794 

97 402 4.143 5.149 
97 404 2.15 3.793 

97 406 2.137 3.562 

98 61 2.593 5.281 
98 88 3.735 5.594 

98 96 2.25 5.422 

98 102 7.281 11.156 
98 104 2 3.422 

98 227 4.171 7.765 

98 309 4.219 7.375 
98 312 1.813 3.407 

98 313 3.766 6.094 

98 325 1.969 4.016 
98 327 4.25 6.735 

98 402 6.531 8.765 

98 403 1.594 3.25 
98 404 1.266 2.547 

99 88 5.484 7.109 

99 109 6.746 8.202 
99 201 1.785 3.089 

99 227 2.531 3.843 

99 312 1.987 3.104 
99 324 1.453 2.828 

99 325 3.072 4.174 

99 402 3.921 5.327 
99 403 1.549 3.741 

9001 61 1.656 3.062 

9001 88 2.203 5.797 
9001 96 1.562 6.015 

9001 102 9.016 10.906 

9001 104 1.89 3.718 
9001 109 3.5 4.828 

9001 201 1.813 4 

9001 227 1.328 5.359 
9001 309 1.125 4.203 

9001 312 1.359 2.953 

9001 324 1.469 3.313 
9001 325 1.437 3.281 

9001 403 2.047 4.172 

9001 406 1.187 2.656 
9002 61 4.156 5.969 

9002 88 2.203 6.656 

9002 96 4.985 7.172 
9002 102 2.859 9.172 

9002 104 1.375 4.141 

9002 109 1.234 3.468 
9002 227 2.172 3.828 

9002 309 1.531 8.312 
9002 312 1.938 6.469 

9002 313 5.562 7.468 

9002 324 1.703 4.218 
9002 325 1.766 4.797 

9002 327 3.172 7.297 

9002 402 6.109 7.703 
9002 406 4.218 8.859 

 
Group 10, image complexity 1: 

 
S # I # T2mark T2next 

100 15 2.047 4.125 
100 34 0.954 2.532 

100 46 1.968 3.921 

100 47 1.437 2.593 
100 48 0.922 2.156 

100 57 3.89 5.718 

100 63 1.25 2.906 
100 64 1.469 2.656 

100 68 1.609 4.078 

100 80 1.093 2.515 

100 82 1.734 4.891 

100 97 1.375 2.906 

100 206 1.265 2.953 

100 208 1.609 3.859 

100 209 1.719 5.922 

100 220 1.766 3.656 
100 221 1.281 2.515 

100 230 1.25 2.593 

100 411 1.375 5.109 
101 6 1.611 2.477 

101 15 1.215 2.021 

101 19 0.957 1.838 
101 26 1.041 1.802 

101 57 2.48 4.177 

101 68 1.378 3.118 
101 77 1.763 3.237 

101 82 1.16 2.349 

101 209 1.653 3.988 
101 306 1.32 2.422 

102 15 0.875 1.86 

102 34 2.079 3.094 
102 46 1.063 2.766 

102 47 1.219 5.625 

102 48 1.094 2.36 
102 57 3.985 5.782 

102 63 0.843 2.156 

102 64 1.797 3.141 
102 67 0.906 1.953 

102 68 1.422 2.5 

102 80 0.781 2.203 
102 82 1.281 2.953 

102 97 1.047 2.828 

102 111 1.234 3.218 
102 206 0.765 2.39 

102 208 0.766 1.922 

102 209 1.5 2.766 
102 220 1.578 4.156 

102 221 1.063 6.094 

102 306 1.359 3.859 
103 6 1.687 5.141 

103 15 1.547 4.344 

103 19 2.25 7.313 
103 26 1.438 2.938 

103 68 2.172 5.563 

103 77 1.625 3.172 
103 82 2.703 3.968 

103 306 1.953 5.797 

104 6 1.796 2.89 
104 15 1.094 2.313 

104 19 4.843 5.875 

104 26 1.771 2.828 
104 57 1.484 2.937 

104 68 2.938 3.922 
104 77 1.375 2.859 

104 82 1.437 2.578 

104 209 2.797 4.156 
104 306 1.094 2.719 

105 6 1.937 8.906 

105 15 1 2.641 
105 19 1.047 2.422 

105 26 0.922 6.094 

105 57 1.157 3.235 
105 68 0.969 4.25 

105 77 1.938 3.891 

105 82 1.031 5.156 
105 209 1 3.266 

106 15 1.798 5.815 

106 26 1.221 2.769 
106 34 0.953 3.626 

106 46 2.511 4.814 

106 47 1.183 3.38 

106 48 1.845 2.917 

106 57 2.14 3.323 

106 63 1.812 2.83 
106 64 4.621 5.862 

106 67 1.519 3.603 



122 

 

106 68 1.197 1.991 

106 77 1.798 3.826 

106 206 1.426 2.822 

106 208 1.282 2.674 

106 209 1.123 2.261 
106 221 1.419 3.288 

106 411 1.901 4.102 

107 26 1.203 3.047 
107 57 1.25 4.938 

107 68 1.5 5.312 

107 82 2.703 4.593 
107 209 1.687 4.078 

107 306 1.812 4.781 

108 15 1.5 3.485 
108 34 1.125 1.922 

108 47 3.031 4.859 

108 54 1.625 2.39 
108 57 2.438 5 

108 63 1.797 3.5 

108 64 1.672 3.672 
108 68 1.437 4.703 

108 206 1.578 3.89 

108 208 1.172 2.031 
108 411 2.094 4.016 

109 6 1.016 2.172 

109 15 0.781 1.813 
109 19 1.188 2.219 

109 26 0.86 1.735 

109 57 1.047 3.203 
109 68 1.141 2.266 

109 77 1.172 2.781 

109 82 1.125 1.922 
109 306 1.312 2.281 

110 6 1.297 3.797 

110 15 1.047 2.672 
110 19 1.281 3.687 

110 26 1.265 3.078 

110 57 1.703 4.125 
110 68 1.063 4.266 

110 77 1.485 3.391 

110 82 2.5 4.906 
110 209 1.391 3.391 

110 306 4.266 7.469 

111 15 7.186 9.812 
111 46 3.577 5.344 

111 48 1.383 2.588 

111 68 2.042 3.609 
111 77 1.783 3.767 

111 80 1.055 2.41 

111 82 1.797 3.133 
111 97 2.15 4.131 

111 208 1.029 2.504 
111 209 2.411 4.039 

111 211 1.193 2.639 

 
Group 10, image complexity 2: 

 
S # I # T2mark T2next 

100 27 1.563 2.969 

100 33 1.734 4.875 

100 41 1.156 2.578 
100 69 1.156 2.656 

100 72 1.672 3.812 

100 83 1.203 2.578 
100 87 1.375 3.156 

100 105 1.187 3.047 

100 204 1.532 4.407 
100 217 3.109 4.812 

100 223 1.594 3.016 

100 310 1.313 2.766 
101 14 1.992 3.151 

101 16 4.961 7.485 

101 27 1.334 2.741 

101 33 1.498 2.78 

101 41 1.991 2.812 

101 42 1.322 2.036 

101 62 1.944 4.496 

101 69 0.912 1.611 

101 72 0.972 3.617 
101 83 1.103 1.724 

101 87 1.127 2.286 

101 92 6.607 7.987 
101 95 1.228 2.004 

101 105 5.226 6.854 

101 204 1.74 4.467 
101 207 1.43 2.098 

101 210 1.175 2.335 

101 223 1.261 2.522 
101 224 1.189 2.224 

102 33 1.25 2.516 

102 69 1.125 2.484 
102 72 2.219 3.984 

102 83 2.578 3.875 

102 87 1.14 2.953 
102 95 1.422 2.579 

102 105 1.625 2.812 

102 204 1.609 3.218 
102 217 1.578 3.594 

102 223 4.063 5.688 

102 231 3.359 5.516 
102 303 1.735 3.156 

102 304 0.984 4.874 

102 308 4.062 5.656 
102 310 1.062 2.484 

103 14 2.313 4.875 

103 16 4.797 8.453 
103 27 1.704 4.297 

103 33 2.937 4.125 

103 42 2.75 6.468 
103 62 4.734 11.391 

103 69 2.203 4.719 

103 83 1.484 3.312 
103 92 5.985 9.516 

103 95 4.062 5.687 

103 204 5.141 14.953 
103 207 2.172 3.437 

103 210 1.657 5.75 

103 217 2.86 4.61 
103 223 2.063 3.438 

103 224 3.968 5.375 

103 308 5.672 9.782 
103 310 4.5 5.766 

104 14 1.219 2.781 

104 16 2.938 4.188 
104 27 2.204 3.891 

104 33 1.187 2.094 
104 42 1.531 2.828 

104 62 1.703 3.156 

104 69 1.297 2.484 
104 72 1.875 2.922 

104 83 2.952 4.568 

104 92 2.157 4.094 
104 95 1.849 2.781 

104 204 2.063 4.032 

104 207 1.29 2.455 
104 210 1.438 3.86 

104 223 1.546 2.703 

104 224 1.25 2.281 
104 310 3.641 5.016 

104 322 1.249 2.718 

105 14 1.578 9.031 
105 16 2.688 10.656 

105 27 1.219 4.985 

105 33 0.906 2.5 

105 41 3.125 4.296 

105 42 1.156 2.734 

105 62 2 6.141 
105 69 1.625 4.344 

105 72 1.328 2.687 

105 83 0.719 1.781 

105 87 1.25 2.75 

105 95 1.312 3.734 

105 204 2.938 4.86 

105 207 2.125 3.453 
105 210 1.312 5.875 

105 217 5.141 6.922 

105 223 1.453 3.156 
105 224 1.546 5.984 

105 308 5.671 10.296 

105 310 2.266 3.891 
105 320 6.078 7.484 

105 322 1.282 5.469 

105 401 3.859 6.219 
106 16 2.186 4.177 

106 33 1.787 2.756 

106 41 1.706 2.827 
106 42 1.768 4.063 

106 62 1.647 2.56 

106 65 1.613 6.311 
106 69 1.429 2.75 

106 72 2.781 4.364 

106 83 1.324 2.115 
106 87 1.76 2.524 

106 204 3.009 3.892 

106 207 2.674 5.512 
106 219 1.474 2.754 

106 223 1.121 1.843 

106 231 1.97 4.357 
106 303 1.429 2.243 

106 310 2.879 3.684 

106 319 4.717 5.55 
106 320 3.994 5.392 

106 322 1.515 4.407 

107 14 1.578 3.89 
107 16 5.093 8.578 

107 27 1.204 4.422 

107 33 1.125 2.797 
107 41 2.5 4.171 

107 42 1.781 2.797 

107 72 1.219 3.078 
107 83 0.984 1.859 

107 87 0.813 1.579 

107 92 3.344 5.953 
107 95 1.109 3.171 

107 207 1.14 2.156 

107 210 1.187 3.422 
107 223 2.25 3.36 

107 224 1.188 2.141 

107 308 3.469 6 
107 310 1.141 2.578 

107 320 1.828 3.687 
107 401 3.781 5.094 

108 14 3.609 5.515 

108 92 1.718 6.218 
108 95 1.078 2.093 

108 204 3 3.875 

108 207 1.703 3.593 
108 223 1.656 3.609 

108 224 3.297 4.047 

108 401 4.25 6.016 
109 27 1.359 2.219 

109 33 1.125 5.5 

109 41 0.969 2.625 
109 42 1.547 2.438 

109 62 1.125 3.75 

109 72 2.359 3.281 
109 83 1.906 2.734 

109 87 0.907 1.86 

109 92 1.64 2.968 

109 95 1.016 2.219 

109 204 1.532 2.703 

109 207 1.218 2.093 
109 210 1.016 1.969 

109 223 0.812 1.75 
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109 224 1.016 2 

109 308 2.656 5.078 

109 310 1.25 2.203 

109 320 0.828 1.75 

109 322 1.297 3.516 
109 401 2.078 4.344 

110 14 6.516 8.047 

110 16 2.187 5.406 
110 27 2.547 4.593 

110 33 1.218 3.343 

110 41 1.172 3.453 
110 42 2.25 4.828 

110 62 1.656 4.187 

110 69 1.594 3.907 
110 72 1.329 3.438 

110 83 1.265 2.547 

110 87 2.109 3.39 
110 95 1.204 2.813 

110 204 4.765 8.046 

110 207 1.562 3.641 
110 210 1.172 4.781 

110 217 2.094 3.734 

110 223 1.235 3.61 
110 224 1.547 2.907 

110 310 2.578 3.812 

110 322 2.063 4.11 
110 401 2.125 4.11 

111 33 1.63 4.012 

111 76 1.177 2.67 
111 92 3.342 4.585 

111 210 3.931 5.71 

111 224 1.058 2.251 
111 231 4.315 5.636 

111 308 2.78 3.854 

111 320 2.666 4.449 
111 401 2.085 5.22 

 
Group 10, image complexity 3: 

 
S # I # T2mark T2next 

100 61 2.375 3.75 

100 88 1.813 9.828 

100 96 2.703 6.219 
100 201 3.953 5.531 

100 402 5.469 6.938 

100 406 2.281 3.469 
101 88 2.597 4.178 

101 96 3.158 6.425 

101 312 1.035 2.611 
101 324 1.17 1.793 

101 403 1.282 2.394 

102 61 1.141 3.422 
102 96 2.343 3.968 

102 201 2.5 6.265 

102 402 3.188 5.188 
103 88 5.531 8.375 

103 201 6.359 12.234 

103 312 6.203 7.562 
103 324 1.469 2.906 

104 88 2.125 3.969 

104 96 2.578 3.937 
104 324 2.094 3.157 

104 403 1.828 3.766 

105 88 2.016 6.61 
105 96 5.547 7.141 

105 201 2.078 9.516 

105 312 2.344 4.625 
105 324 1.36 3.204 

105 403 1.968 4.171 

106 61 2.822 4.885 
106 96 2.305 3.982 

106 102 2.317 5.674 

106 104 2.51 4.12 

106 109 1.444 4.102 

106 309 2.575 3.458 

106 312 4.032 6.173 

106 324 2.295 4.589 

106 327 7.007 7.812 

106 403 1.368 2.996 
107 88 7.703 8.75 

107 96 3.734 4.844 

107 201 4.312 5.234 
107 312 1.297 2.188 

107 324 1.828 2.89 

108 96 3.046 4.562 
108 325 1.828 3.469 

108 402 3.187 6.405 

108 403 1.203 2.797 
108 404 1.563 4.109 

109 88 3.282 4.391 

109 96 1.079 3.328 
109 201 2.484 4.265 

109 312 2.39 3.64 

109 324 3.594 4.328 
109 403 1.281 3.016 

110 88 1.875 4.578 

110 96 2.688 7.454 
110 201 3.484 5.406 

110 312 1.687 3.562 

110 324 1.172 2.891 
110 403 1.719 4.156 

111 88 3.466 5.261 

111 403 2.672 5.221 

 

 



 תקציר

שילוב מפעיל אנושי . פועלים בסביבות דינאמיות ובלתי מובנותמוגבלים בבצועיהם כאשר הם רובוטים אוטונומיים 

מערכות שיתוף פעולה בין אדם לרובוט . הפחתת מורכבות המערכתללשיפור הביצועים ו יכול לתרוםבמערכת רובוטית 

ניתן ליישם שיתוף פעולה ברמות . וק והעקביות של הרובוטה של האדם כמו גם מהדיסמפיקות תועלת מיכולות התפי

. שונות הנבדלות בניהן ברמת האוטונומיה של הרובוט

פיתוח קודם של פונקצית  מתבססת עלההערכה . רובוט-אדם משולבתתיזה זו מתמקדת בהערכת מערכת זיהוי מטרות 

. לה הוגדרו במיוחד עבור משימת זיהוי מטרותארבע רמות שיתוף פעו(. 2006, בכר)מטרה עבור משימת זיהוי מטרות 

הסביבה והמשימה באמצעות , האדם, פונקצית המטרה של המודל מכמתת את השפעת הפרמטרים השונים של הרובוט

. המודל מאפשר לקבוע מהי רמת שיתוף הפעולה האופטימאלית בהינתן פרמטרים אלו. סכום משוקלל של מדדי ביצוע

זמן התגובה משפיע על . הזמן הדרוש לאדם כדי להחליט האם אובייקט הוא מטרה או לאזמן התגובה של האדם הוא 

עבודה זו מציגה המשך פיתוח של פונקצית המטרה ולוקחת בחשבון שזמן התגובה תלוי . עלויות התפעול של המערכת

ובה המבוסס על מודל של מודל זמן תג, במחקר זה. זמן שאינו קבוע בין אובייקטים, בעוצמת האות של האובייקט הנבחן

המודל החדש צפוי לתאר מערכות אמיתיות בצורה טובה יותר על . (2006) משולב לתוך המודל של בכר( 1985)מורדוק 

מטרת המחקר היא להעריך את השפעת זמן התגובה של האדם . ידי התאמת הפרמטרים של פונקצית הזמן למשימה מוגדרת

.  מיטבייםפעת זמן התגובה על רמת שיתוף הפעולה שמניבה את הביצועים ההמחקר מתמקד בהש. על ביצועי המערכת

ברמות שיתוף . הניתוחים מגלים רמות שיתוף פעולה חדשות אשר מועדפות כאשר עלות זמן התגובה של האדם גבוהה

האדם  עלות זמן התגובה של, כתוצאה מכך. ומתעלם מאחרים חלק מהאובייקטים רק האדם מתמקד בבחינת, פעולה אלה

. האדם מתעלם מאובייקטים על ידי קביעת סף ההחלטה שלו לערך קיצוני. יורד והמערכת מציגה ביצועים טובים יותר

משפיעים על , ההסתברות של אובייקט להיות מטרה ועלות הזמן, רגישות האדם, הניתוחים מראים כיצד סוג המערכת

.  תופעת בחירת ערך סף קיצוני

שכאשר המערכת נותנת , הניתוחים מראים. כאשר רגישות האדם נמוכה יכולת ההבחנה שלו בין מטרות לרעש יורדת

אשר גורם לכך שאף אובייקט לא מסומן כמטרה , האדם בוחר ערך סף קיצוני חיובי, עדיפות גבוהה למניעת התראות שווא

אשר , לא להחטיא מטרות נבחר ערך סף קיצוני שליליבמערכת אשר נותנת עדיפות גבוהה . ולא מתרחשות התראות שווא

תופעה זו מופיעה עבור רגישויות גבוהות . גורם לכך שכל האובייקטים מסומנים כמטרות ומכאן שכל המטרות מתגלות

ניתן לראות ששיתוף פעולה עם האדם נהפך פחות כדאי ככל שעלות הזמן , בנוסף. ככל שעלות הזמן גדלה, יותר של האדם

זמן התגובה הממוצע יורד ככל שערך הסף , במודל זמן התגובה. ערך סף קיצוני גורם לירידה בעלויות הזמן הכוללות .גדלה

מיקום ערך הסף משפיע על . ערך סף קיצוני יועדף תמיד, מבחינת עלויות הזמן, לכן. מתרחק ממוצע התפלגות האובייקטים

גורם להסתברויות נמוכות להתראות שווא ולאיתור , לדוגמה, ביערך סף קיצוני חיו. שאר החלקים של פונקציית המטרה

הרווחים והקנסות הכוללים של מקרים אלו . מטרות ולהסתברויות גבוהות להחטאת מטרות ולדחייה נכונה של רעשים

. משתנים בהתאם

.זמן תגובה, זיהוי מטרות, רמות שיתוף פעולה, רובוט-שיתוף פעולה אדם :מילות מפתח
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