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ABSTRACT

Autonomous robots show inadequate results in dynamic and unstructured environments.
Integrating a human-operator into a robotic system can help improve performance and reduce
system complexity. Collaboration between a human-operator and a robot, benefits from both
human’s perception skills and the robot’s accuracy and consistency. Various levels of collaboration

can be applied; each level differs by the degree of autonomy of the robot.

This thesis focuses on evaluation of an integrated human-robot system for target recognition
tasks. The work is based on previous work developed by Bechar (2006). In his work, four
collaboration levels were designed specifically for target recognition and an objective function was
developed to quantify the influence of parameters of the robot, human, environment and task,
through a weighted sum of performance measures. The model developed by Bechar (2006), enables

to determine the optimal level of collaboration based on these parameters.

The human reaction time in target recognition is the time required for the observer to decide
whether an object is target or not. Reaction time influences the operational cost of the system. In
Bechar’s work, the reaction time was constant. This thesis introduces further development of the
objective function; considering the fact that reaction time of the human depends on the signal
strength of the observed object, which is not constant and equal for all objects. A reaction time

model, based on Murdock (1985) is incorporated into Bechar’s model and analyzed.

The new model is expected to describe actual systems in a better way by adjusting time
parameters to a specific task. The study evaluates the influence of human’s reaction time on the
performance of an integrated human-robot target recognition system. Particularly, the study focuses
on how reaction time affects the level of human-robot collaboration that results in best performance.

The thesis presents the mathematical model developed and results of the simulation analysis.

The analysis reveals new collaboration levels that were derived automatically from the
defined ones and are preferable when human reaction time cost is high. In these collaboration
levels, the human concentrates only on part of the objects and ignores others. Therefore, the system

reduces the total human reaction time cost resulting in better performance.

The human ignores objects by setting his cutoff point to an extreme value. The analysis shows
how the system type, the human sensitivity, the probability of an object to be a target, and the time

cost, all influence the phenomena of extreme cutoff point selection.



When human sensitivity is low, the human badly discriminates between targets and other
objects. When the system gives high priority for not causing false alarms, the human prefers an
extreme positive cutoff point, resulting in no objects marked as targets, and no false alarms. For
systems that give high priority for not missing targets, an extreme negative cutoff point was

preferred; resulting in all objects marked as targets and no misses.

The analysis shows that the time costs affect the position of the optimal cutoff point. The
phenomenon, introduced above, arises for higher human sensitivities as the time cost is higher.
Furthermore, the analysis shows that collaboration with a human is less profitable in cases when the

time cost is high.

An extreme cutoff point position decreases the total operation time cost. In the reaction time
model, the mean response time reduces as the cutoff point is far from the mean of the distribution;

therefore, in the sense of time costs, the extreme cutoff point is always preferred.

The position of the cutoff point influences all other parts of the objective function. An
extreme positive cutoff point, for example, causes small probabilities of false alarms and hits; and
causes high probabilities of miss and correct rejections. The overall gains and penalties of these

outcomes are modified accordingly.

Keywords: Human-robot collaboration, collaboration levels, reaction time, target recognition.
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1 INTRODUCTION
Despite intensive R&D efforts in robotics, autonomous robots can still not perform reliably in “real-
world” conditions (Bechar et al., 2009). Current robotic systems are best suited for applications that
require accuracy and high yield under well defined and known conditions (Bechar, 2006). They
cannot cope with unexpected situations encountered in unstructured and changing environments. A
major problem in most robotic systems is target recognition. In detection of natural objects, this is
especially problematic since the objects have high degrees of variability in shape, texture, color,
size and position (Bechar, 2006). This as well as the limitations of sensor technologies and the
changing environmental conditions (e.g., lighting, occlusion) prohibits the use of completely
autonomous systems in such environments (Dubey & Everett, 1998). Humans on the other hand,
can easily fit themselves into such changing environments. By taking advantage of the human
perception skills and the robot's accuracy and consistency, the combined human-robotic system can

be simplified, resulting in improved performance (Bruemmer et al., 2005).

This thesis is based on a previous work (Bechar, 2006) which focused on development of an
objective function for human robot collaborative systems for target recognition task. Bechar (2006)
developed four levels of collaboration for target recognition: two independent levels, autonomous
(R) and manual (H), and two levels that define collaboration between the human operator and the
robot. The first one (HR) is a collaboration level where the robot indicates potential targets and the
human operator, follows and confirms real targets and adds targets the robot missed. In the second
collaboration level (HOR), the human supervises the robot. The robot itself marks targets and the
human operator checks its' marks. The human operator cancels false targets and mark targets that
the robot missed. In addition, a method to determine the best level of collaboration was developed
(Bechar, 2006). The best collaboration level is the level that achieved the highest system
performance. The system objective function enabled to determine the expected value of task
performance, given the parameters of the system, the task, and the environment. The objective
function composed of the four penalties or rewards of the recognition process (i.e., hit, correct
detection, false alarm and miss) and the system operational costs. The operational costs partially
consist of the cost of time, spent during system operation. The cost of the human decision time,
which is the time takes the human to decide whether an object is a target or not, is the main part out

of the total operational costs.



The objective function of Bechar’s model considered the human decision time as a constant.
However, it is known that reaction time in target recognition should take into account factors as the
strength of the observed object, which is not constant (Murdock & Dufty, 1972; Pike, 1973;
Murdock, 1985). This thesis introduces further development of the model by incorporating non-
constant reaction times. The new model, proposed in this research, provides a better description of
actual systems by adjusting time parameters to a specific task and taking into consideration the fact
that reaction time of the human depends on the strength of the observed object. Evaluating the best
collaboration level according to the new model, considers the influence of human reaction time on

system performance.

This thesis evaluates the influence of human reaction time on the performance of a
collaborative target recognition system. Particularly, the study focuses on how reaction time affects
the recommended level of human-robot collaboration. The research aims to: (1) adjust a reaction
time model to the objective function of a collaborative target recognition system, and (2) perform a
thorough numerical analysis of the objective function in order to evaluate the influence of the

human reaction time.

The dissertation is organized as follows: chapter 2 presents a literature review on autonomous
robots, human-robot collaboration, target recognition and reaction time models. The literature
review also includes description of Bechar's model and signal detection theory. The methodology
chapter (chapter 3) outlines the research. Chapter 4 presents the development of the reaction time
model and show how it is incorporated into Bechar's model. Chapters 5 and 6 show the numerical
and sensitivity analyses of the new model. The thesis concludes in chapter 7, which includes

research limitations and discussion of future research.



2 LITERATURE REVIEW

The review includes seven main topics: (1) automation, (2) human-robot collaboration, (3)
collaboration types and levels, (4) collaboration in target recognition task, (5) introduction of a

collaborative model for target recognition, (6) signal detection theory, and (7) reaction time models.

2.1 Automation

"Machines, especially computers, are now capable of carrying out many functions that at

one time could only be performed by humans" (Parasuraman et al., 2000).

Parasuraman et al. (2000) defined automation as a device or system that accomplishes
(partially or fully) a function that was previously carried out (partially or fully) by a human
operator. These functions are often things that humans do not wish to perform, or cannot perform as

accurately or reliably as machines.

A teleoperator is a machine that extends a person's sensing and/or manipulating capability to a
remote location (Sheridan, 1992). The term Teleoperation refers most commonly to direct and

continuous human control of the teleoperator (Sheridan, 1992).

Recently, robots take part of many aspects of our society, from military uses to medicine;
from entertainment to home and office laborers; for use on land, sea, air, and space (Bruke et al.,
2004). Robot teleoperation, still the primary mode of operation in today's human—robot systems,
can be highly successful and irreplaceable, but these systems are also very limited and expensive

(Bruke et al., 2004).

2.2  Human-robot collaboration

Autonomous robots are systems that can perform tasks without human intervention. They are
best suited for applications that require accuracy and high yield under stable conditions, yet they
lack the capability to respond to unknown, changing and unpredicted events (Bechar, 2006).
Humans, dissimilarly, can easily fit themselves into changing environment (Bechar, 2006). In
general, human and robot skills are complementary (Rodriguez & Weisbin, 2003). By taking
advantage of the human perception skills and the robot's accuracy and consistency, the combined

human-robotic system can be simplified, resulting in improved performance (Bechar et al., 2009).

The unstructured nature of the tasks as well as the limitations of the current sensor
technologies prohibits the use of completely autonomous systems for remote manipulation (Dubey
& Everett, 1998). Hence, teleoperated systems, in which humans are an integral part of the control,
are most often used for performing these tasks (Dubey & Everett, 1998). Usage of remote mobile

robots takes advantages of human intelligence and machine proficiency (Bruemmer et al., 2005).



However, many applications still use robots as a passive tool and the cognitive burden of all
decisions are placed on the human operator. Sometimes it is assumed that autonomy (i.e., full
independence) is the ultimate goal for remote robotic systems (Bruemmer et al., 2005). Bruemmer
et al. (2005) suggested that effective teamwork, where the robot is a peer, is an equally profitable
aim. In their experiments, they tried to provide evidence for a form of collaborative control where

robots are regarded as peers and effectively used as trusted team members (Bruemmer et al., 2005).

Sheridan (1992) states seven motivations to develop supervisory control:

"(1) to achieve the accuracy and reliability of the machine without sacrificing the
cognitive and adaptability of the human, (2) to make control faster and unconstrained by the
limited pace of the continuous human sensorimotor capability; (3) to make control easier by
letting the operator give instructions in terms of objects to be moved and goals to be met,
rather than instruments to be used and control signals to be sent; (4) to eliminate the demand
for continuous human attention and reduce the operator's workload; (5) to make control
possible even where there are time delays in communication between human and teleoperator;
(6) to provide a "fail-soft" capability when failure in operator's direct control would be proved
catastrophic, and (7) to save lives and reduce cost by eliminating the need for the operator to

be present in hazardous environment, and for life support required to send the operator there.”

(Sheridan, 1992)

EXTEND RELIEVE w

"suagIiNG " VIRADING”

Figure 1: The notions of trading and sharing control between human and computer.
L is the load or task, H is the human, and C is the computer (Sheridan, 1992)

Sheridan (1992) explained the difference between sharing and trading control. Sharing control
means that the human and the computer control different aspects of the system on the same time.
When the computer extends human's capabilities or relieves the human by making her job easier,
they are sharing control (Figure 1). Trading control, on the other hand, means that either the human
or the computer turns over control to the other. When the computer backs up or replaces the human
operator, they are trading control (Sheridan, 1992). Both sharing and trading control are relevant in

human-robot collaboration.



A main issue in space exploration is to decide what human or robotic system (or a suitable
combination of the two) is most appropriate to use in those exploration tasks (Rodriguez and
Weisbin, 2003). Rodriguez and Weisbin (2003) introduced a method to evaluate systematically the
relative performance of some optional human-robot systems, in order to decide which type of assets
to use in a given situation. First, they decompose the space scenario that needs to be analyzed into a
set of major functional operations. For each of the functional operations, they define a set of
performance metrics to be used in the evaluation. Then they specify the agents (robot, human or a
combination) to be evaluated, together with the resources needed for their implementation. The
performance of each agent is then evaluated for each of the functional operations, and a score,
which estimates the aptitude of each agent for each operation, is determined. A composite score is

then computed for each agent and a comparison between systems' performances is done.

2.3 Collaboration types and levels

As aforementioned, automation refers to the full or partial replacement of a function
previously carried out by a human operator (Parasuraman et al., 2000). This means that automation
can differ from the lowest level of manual performance through some levels of collaboration
between the human and the robot up to the highest level of full autonomy (Parasuraman et al.,

2000).

Sensory || Perception/ [ | Decision || Response
Processing Working Making Selection
Memory

Figure 2: Simple four-stage model of human information processing (Parasuraman et al., 2000)

Parasuraman et al. (2000), in their article: "Types and Levels of Human Interaction with
Automation", revealed a four-stage model of human information processing (see Figure 2). The first
stage, Sensory Processing, refers to the acquisition and registration of multiple sources of
information. The second stage, Perception/Working Memory, involves conscious perception and
manipulation of processed and retrieved information in working memory. This stage also includes
cognitive operations, but these operations occur prior to the point of decision. The third stage,
Decision Making, is where decisions are made based on such cognitive processing. The fourth and
final stage, Response Selection, involves the implementation of a response or action consistent with

the chosen decision (Parasuraman et al., 2000).

One can divide system functions into four classes that match each of the four stages in human
information processing (Parasuraman et al., 2000): (1) information acquisition, (2) information
analysis, (3) decision and action selection, and (4) action implementation. Automation can be

implemented in each of these functions. A particular system can involve automation of all four



dimensions at different levels as shown in Figure 3 (Parasuraman et al., 2000). Each of these

dimensions can be automated in varying levels of automation. The levels of automation of decision-

making, that will be introduced later, can be applied, with some modifications, also to the other

dimensions.

Information Information Decision Action
Acquisition Analysis Selection Implementation
Automation Automation Automation Automation
Level Level Level Level
High High High High
System B /---_"""—"\-—\_
System A Ps_
J 1 1 -
Low Low Low Low

Figure 3: Levels of automation for independent functions of: information acquisition, information
analysis, decision selection, and action implementation (Parasuraman et al., 2000)

Sheridan (1978) described ten levels of automation of decision and action selection. Table 1

shows different levels of automation, with higher levels representing increased autonomy of the

system. At the low levels, the operator must get involved in order to accomplish an operation.

Under level 6 or higher, the system will automatically execute its own resolution unless the operator

intervenes (Parasuraman et al., 2000).

Table 1: Scale of Levels of Automation of Decision and Control Action (Sheridan, 1978)

HIGH

LOW

R R R

0.

The computer decides everything and acts autonomously, ignoring the human.
Informs the human only if it, the computer, decides to

Informs the human only if asked, or

Executes automatically, then necessarily informs the human, and

Allows the human a restricted time to veto before automatic execution, or
Executes that suggestion if the human approves, or

Suggests one alternative, and

Narrows the selection down to a few, or

The computer offers a complete set of decision/action alternatives, or

The computer offers no assistance: the human must take all decizions and actions.




2.4 Examples of collaboration levels

Levels of collaboration are sometimes referred to as modes of operation of the given human-
robot system. Following we describe examples of collaboration levels implementations in different
applications. All of the examples include fully autonomy and fully manually levels, which consist
of a single collaborator without any cooperation. The collaboration levels differ by nature, scale,

structure, and number of levels.

Bechar and Edan (2000) evaluated two collaboration levels for agriculture robot guidance
through an off-road path. Two different guidance methods were tested: Directional guidance, where
the gross direction of advance is being marked and Waypoint guidance, where the system draws the
desired course of advancing along the path. Two collaboration levels were examined for each
guidance method: HO, where the human-operator marks the desired direction/course solely; and
HO-Rr, here the human-operator marks the desired direction/course with recommendations from the

robot (Bechar & Edan, 2000).

Bruemmer et al. (2005) defined four control modes of a remote mobile robot in an in-door
search and exploration task. (1) Tele Mode is a fully manually mode of operation, in which the
operator controls all robot movements. (2) Safe Mode is similar to Tele Mode. However, in Safe
Mode the robot is equipped with a level of initiative that prevents the operator from colliding with
obstacles. (3) Shared Mode, the robot can relieve the operator from the burden of direct control,
using reactive navigation to find a path based on perception of the environment. The robot accepts
operator intervention and supports dialogue using a finite number of scripted suggestions (e.g.,
“Path blocked! Continue left or right?”), that appear in a text box within the graphical interface. (4)
Autonomous Mode consists of series of high-level tasks such as patrol, search region or follow path.
In this mode, the only user intervention occurs on the tasking level; the robot itself manages all

decision-making and navigation (Bruemmer et al., 2005).

Bechar (2006) developed four collaboration levels for target recognition: Fully autonomous
level (R), in which the robot fulfills the task all by itself; and fully manually level (H), where the
human-operator does not use any help of the robot. Two more levels define collaboration between
the human operator and the robot. The first one (HR) is a collaboration level where the robot
indicates potential targets and the human operator at the following stage needs to mark the targets
he thinks are real and to add marks of targets the robot did not indicate. In the second collaboration
level (HOR), the human supervises the robot. The robot itself marks targets and the human operator
checks its' marks. The human operator unmarks targets that are not real and mark targets that the

robot missed (Bechar, 2006).



Hughes and Lewis (2005) designed a remote robotic system for a search and exploration task.
In order to control the robot, one or two cameras feed the human operator with live video from the
remote environment. Hughes and Lewis used two different levels of control on the cameras. At the
first one, Sensor-Driven Orientation, the operator supervises the camera while a guided-orientation
system recommends it where to look. Whenever the operator wants to, she can take control over the
camera, overriding system's recommendations. The other level, User-Controlled Orientation, the

camera is all the time under operator's control.

Czarnecki and Graves (2000) described a scale of five human-robot interaction levels for a

telerobotic behavior based system.

Most of these applications determine the best collaboration level for specific system and
mission conditions. Experiments were conducted in order to compare performance under different
levels of collaboration. Generally, the main conclusion was that systems perform better, in different
aspects, when human and robot collaborate. Moreover, the level of autonomy should not be
arbitrary and the user should be able to set robot's level of autonomy according to environment or
task constraints (Steinfeld, 2004). Team members (humans and robots) must recognize changing
situations and adapt the best collaboration level to ensure that the mission is done successfully

(Bruke et al., 2004). An expansion of Bechar's research (2006) will follow in the next section.

2.5 Collaboration in target recognition tasks

Target recognition is a common and critical element in most robotic systems (Bechar, 2006).
For example, the detection of parts in assembly lines, the detection of landmarks in autonomous
navigation, or the detection of fruits for robotic harvesters. Target recognition is a common and
important topic in many other research areas such as medical and brain research, quality assurance,
human factors, agriculture and remote sensing (Bechar, 2006). Automatic target recognition in
agriculture environment is characterized by low detection rates and high false alarm rates due to the

unstructured nature of both the environment and the objects (Bechar & Edan, 2003).

Target recognition is a mission in which the system needs to mark objects as targets (Bechar,
2006). Typical systems for target recognition use a sequence of algorithms that operate in different
stages in order to achieve recognition (Bhanu et al., 2000). A vision analysis based algorithm is
used in order to decide whether an object is a target or not (Bulanon et al, 2001). For example,
Bulanon et al. (2001) made use of color difference of red histogram in order to recognize apple
fruits in images of CCD camera (Figure 4). Bhanu et al. (2000) went farther and proposed a
learning-based target recognition system that is capable of automatically adjusting its procedural

parameters in order to achieve adaptive target recognition process.
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Figure 4: Vision analysis for apple fruit detection (Bulanon et al, 2001)
(a) CCD image, (b) segmentation of color difference of red, (c) color difference of red histogram
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Bechar, in his Ph.D. thesis (2006), examined human-robot collaboration for target
recognition. Four collaboration levels were defined and a method to determine the best
collaboration level was evaluated. To measure system performance under different collaboration
levels an objective function has been developed (Bechar, 2006). The objective function includes
five parts: hit (correct detection), false alarm, miss, correct rejection, and operational cost. Each of
the first four parts represents penalties or rewards of the recognition process. For instance, when a
correct detection occurs, meaning a real target was detected by the system, a reward is summed to
the objective function. Likewise, a penalty is taken into account when a target is missed or when the

system makes false alarm, marking a non-target as a target (Bechar, 2006).

Bechar (2006) found that the H collaboration level is never the best collaboration level
probably due to its high operational cost and low hit rate relative to the other collaboration levels.
Thus, collaboration of human and robot in target recognition tasks will always improve the optimal
performance. The combination of both human and robot in the HOR collaboration level increases
the system sensitivity in most cases and increases the probability of a hit while reducing the
probability of false alarms. In addition, findings indicated that when robot sensitivities are higher

than human sensitivities the best collaboration level is R (Bechar, 2006).

Oren, in his B.Sc final project (2007), continued Bechar's work and performed sensitivity
analyses of the objective function in order to understand how changes in different parameters

(human, robot, task, and environment) influence performance of the integrated human-robot system.

Oren et al. (2008) found that an increase in human and/or robot sensitivity causes an increase
in the objective function score and in fact, increases system's performance. Superior sensitivity
means better capability to discriminate between a signal (target) and a noise (no target) and
therefore, more hits and fewer false alarms occur (Oren et al., 2008). In addition, a sensitivity
analysis of the thresholds (see interpretation in Signal Detection Theory subchapter, 2.7) exposed
that in some cases, a small deviation from the optimal value causes shifts in the best collaboration

level.



2.6 Collaborative model for target recognition (Bechar, 2006)

This chapter details the objective function of the collaborative model developed by Bechar

(2006) for target recognition tasks.

The objective function describes the expected value of system performance, given the
properties of the environment and the system. The goal is to maximize the objective function. The
value of the objective function can be translated into a monetary value. The objective function

composed of the four responses of the target detection process and the system operational costs:

V;v :VHY+VMY+V

FAs + VCRc + V;c
Where ¥, is the gain for target detections (hit), V., is the penalty for false alarms (FA), V,,
is the system penalty for missing targets (miss), V. is the gain for correct rejections (CR), and ¥,

is the system operation cost. All gain, penalty and cost values have the same units, which enable us

to add them together to a single value, expressed in the objective function.

The gain and penalty functions are:
V=N-F-P,-V,
Viue=N-P.-B,-V,
Viae =N-(1=F5 ) Fpy -V,
Vere =N -(1=F ) Fop, -V
Where, N is the number of objects in the observed image and P, is the probability of an

object becoming a target. The third parameter in the equations, P, , is the system probability for one

of the outcomes: hit, miss, false alarm or correct rejection (X can be H, M, FA, CR). The fourth

parameter, V. , is the system gain or penalty from the expected outcome.
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The system’s probability of a certain outcome is influenced from the serial structure of the

model and is composed of the robot and the human probabilities:
By=PFy By +(1-F,; )-b,
PMS‘ = PMr : PMh + (1 - PMr ) : PMrh

P, =P, P

FAs FAr FArh

+(1_PFAr)'PFAh
PCRs = PCRr 'PCRh +(]_PCRr ) PCRrh
Where,

(1) B, is the robot probability of a hit,

(2) B,, is the human probability of confirming a robot hit,

(3) B, is the human probability of detecting a target that the robot did not detect,

(4) P, is the robot miss probability,

(5) B, 1s the human probability of un-confirming a robot hit,

(6) B, 1s the human probability of missing a target the robot missed,

(7) P., 1s the robot false alarm probability,

(8) P.,, 1s the human probability of not correcting a robot false alarm,

(9) P.,, 1s the human probability of a false alarm on targets the robot correctly rejected,
(10) P, is the robot probability of a correct rejection,

(11) P, is the human probability of correcting a robot false alarm, and

(12) P, is the human probability of a correct rejection on targets the robot correctly rejected.

The sum of hit and miss probabilities (of the same type) equals one, so does the sum of false

alarm and correct rejection probabilities.

The system’s operation cost is:
Vig=ts Vi+[N-F- By + N-(1=F; ) Py ] Ve
Where, ¢, is the time required by the system to perform a task, V is the cost of one time unit,

and V. is the operation cost of one object recognition (hit or false alarm).
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The system time consists of the time it takes the human to decide whether to confirm or reject
robot detections; and the time it takes the human to decide whether objects not detected by the robot
are targets or not. The robot operation time, ¢ , of processing the images and performing hits or
false alarms, is also included.

Iy = N'Ps Py, 'PHrh “Crton +N'PS '(I_PHr)'PHh T+

+N-Fs- By, '(I_PHrh)'tMrh +N-F '(I_PHr)'(]_PHh)'ch +

+N'(]_Ps)'PFAr 'PFArh L +N'(]_PS)'(1_PFAr)'PFAh Tt

+N'(]_PS)'PFAr '(]_PFArh)'ICRrh +N'(]_PS)'(]_PFA;-)'(]_PFAh)'tCRh +N-t

I

Where,

(1) t,,, 1s the human time required to confirm a robot hit,

(2) t,, is the human time required to hit a target that the robot did not hit,

(3) t,,, 1s the human time lost when a robot hit is missed,

(4) t,,, is the human time invested when missing a target that the robot did not hit,

(5) t,,,, 1s the human time needed not to correct a robot false alarm,

(6) t,,, 1s the human false alarm time,

(7) t.p, 1s the human time to correctly reject a robot false alarm,

(8) .z, 1s the human correct rejection time, and (9) ¢, 1s the robot operation time.
Explicit expression of the system objective function, V', , suitable for all collaboration levels, is:

Vls :N'PS '[PHr 'PHrh '(VH +VC+tHrh 'V;)"‘(I_PHr)'PHh '(VH +VC+tHh V;)]"'

NP [ By (1= By )-(Vyg -V, )+ (1= By )-(1= By )-(Vyy 1,V )] +

+N'(]_PS)'[PFAr'PFAm'(VFA"'VC"‘tFArh'Vt)"'(]_PFAr)'PFAh'(VFA"'VC"'tFAh'Vt)]""

AN (1=F; ) [ By (1= Py, ) (Veg T egy V, )+ (1= Pry ) (1= By ) (Vg +cp V)] + Nt -V,
For the H collaboration level, the system objective function will be a degenerate form of the full

objective function, and will not include the robot variables:

Viy=N-K '[PHh '(VH +Ve+ty, 'Vz)"'(]_PHh)'(VM + Vz)]+
+N'(1_PS)'[PFAh '(VFA +VC+tFAh'Vt)"'(]_PFAh)'(VCR+tCRh'V)]

t

In the R collaboration level, the system objective function will be a degenerate form of the full

objective function, and will not include the human variables:

Vls :N'PS'[PHr'(VH+Vc)+(]_PHr)'VM]+
+N-(1-F,)-[P., (Vo +V.)+(1-P,. ) V] +N-t -V
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2.7 Signal detection theory

This section gives a tutorial for the signal detection theory.

"Reading in a coffee shop, you see someone who looks familiar. Have you met him
before? Should you go and talk to him at the risk of embarrassment when you realize he is a
stranger? On the other hand, should you pretend to ignore him at the risk of offending your
friend? Both paths of action have potential costs and benefits and the correct decision is not
clear. Furthermore, the decision you make might be biased by your own previous experience.
For example, if in the past you accidentally waved 'hello’ to a strange, then you might be less

likely to wave to the person who looks familiar" (http://wise.cgu.edu,).

This is an example of detection process. A common dimension of these situations is that there
is doubt whether a signal is present or not (Sheridan, 1992). Signal detection theory provides a
general framework to describe and study decisions that are made in ambiguous situations (Wickens,
2002). This decision theory tries to estimate decision-making processes for binary categorization
decisions, i.e., Yes/No or True/False. It is specifically concerned with how these choices are, or

should be made under uncertain conditions (Brown & Davis, 2006).

Four potential types of outcomes are possible in a binary detection process (see Figure 5). An
outcome is dependent on the decision-maker decision and on the actual circumstances, i.e., was
there a signal or not. Decisions rely on a detector, which must notice a signal (S) when it occurs
without being diverted by a noise (N). When a detector indicates a signal, only one of the two must
be true: signal is present (hit) or is absent (false alarm, FA). When a detector does not indicate a
signal, either it missed (miss) the signal, or there is no signal (correct rejection, CR) (Wickens,
2002). These responses are also often called: correct positive (CP), incorrect positive (IP), incorrect
negative (IN), and correct negative (CN); or true positive (TP, TT), false positive (FP, FT), false
negative (FN, FF), and true negative (TN, TF), respectively (Brown & Davis, 2006).

Reference
Signal Noize
o Sienal Hit False Alarm
Decision g {CP, TP, TT) (IP, TN, FT)
Noise Miss Correct Rejection
(IN, FN, FF) {CN, TN, TF)

Figure 5: Four potential outcomes of the detection process

In target recognition, the recognition system aims to detect targets. The system gets a set of
objects and needs to mark the objects it thinks are targets (Bechar, 2006). The outcomes of the

recognition process are specified as follows. Hit - when the system marks a real target; Miss - when

13



the system misses a target; False Alarm - when the system marks a non-target as a target; and

Correct Rejection - when a non-target is not marked (Bechar, 2006).

The decision-maker needs to detect signals while background noise exists all the time. A
continuous variable X (e.g., temperature, concentration, density, probability) represents the stimulus
of the process (see Figure 6). The specific value of X can be either signal or noise. Two
distributions, one of noise-only (N) and one of signal-plus-noise (S+N), represent the probability of

such a stimulus to be a signal (Bechar, 2006).

piy N

N\

L J

e | 1L

Figure 6: An example of binary decision analyzed with SDT (Bechar, 2006)

The decision whether a stimulus is a signal or not, leans on a criterion value of X (denoted as
x), called also a cutoff point (Cohen & Ferrell, 1969) or a threshold (Brown & Davis, 2006). If the
detector notices a stimulus higher than the criterion, the decision will be that a signal is in presence,
otherwise, there is no signal. When a signal is present, the detector can either detect it or not,
resulting in a sum of probabilities of hit and miss equaling one (see Figure 7). The same rule applies
to the sum of probabilities of false alarm and correct rejection when a signal is absent (Bechar,

2006).

Figure 7: Outcomes probabilities when a signal is absent (a) or is present (b)

The distance between the means of the two distributions (denoted as d' in Figure 6) defines

the detector's ability to discriminate between a signal and a noise. The discrimination ability
influenced both by the capability of the measured variable to distinguish between signal and noise

(Brown & Davis, 2006), and by the observer's sensitivity (Bechar, 2006). When d'=0, the two
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distributions completely overlap and it is impossible to distinguish between them. As d' increases,
it becomes easier to distinguish between signal and noise (Bechar, 2006).

The Receiver Operating Characteristic (ROC) curve was introduced in World War II for
military radar operations as a means to characterize the operators' ability to identify correctly
friendly or hostile aircraft based on a radar signal (Brown & Davis, 2006; http://wise.cgu.edu). A
cross plot of hit and false alarm rates can be generated by moving the cutoff point over the range of

X (see different #; in Figure 8). The curve produced is the ROC curve.

ROC curve
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Figure 8: Generation of the ROC curve by evaluating hit and false alarm rates
at various decision thresholds on x (Brown & Davis, 2006)

The curve always passes through points (1,1) and (0,0). When the criterion is positioned at t,
(Figure 8), the detector considers all stimulus as signals, therefore, hit and false alarm rates equal
one. On the other hand, when positioned in ts, no stimulus would be considered signal and the rates

equals zero (Brown & Davis, 2006). Other properties of the curve will be discussed later.

Common measurements of goodness of the decision process are the classification and
likelihood rates (Brown & Davis, 2006). Classification rate is defined as the proportion of correct
decisions (hit and correct rejection) to total decisions. The performance of a decision-maker in a
given set of circumstances is fully described by the frequencies of the various possible outcomes
(Cohen & Ferrell, 1969). Therefore, the likelihood ratio (denoted as B in Figure 7), which is the
proportion of hit rate to false alarm rate at the cutoff point, is another way to measure performance
(Bechar, 2006). Good performance achieves high hit rate and low false alarm rate. Hence high
likelihood ratio suits system that performs well (Brown & Davis, 2006). An advantage of likelihood
ratios is that they do not depend on the signal rate (Brown & Davis, 2006).

With the purpose of achieving the highest likelihood rate, one would like to operate at the
upper left corner of Figure 8 (indicated by a star in the figure), but cannot because of the overlap of
the two distributions (Sheridan, 1992). It is possible that hit rate equals one while false alarm rate

equals zero only when the two distributions do not overlap (see example, Figure 10) andd'—
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(Sheridan, 1992). In order to get best performances under given distributions of noise and signal,
there is a need to find criterion value x adjusted to the optimal likelihood ratio . In applying this
theory it is of interest to see if human decision makers are optimal and select x= 3, or if they

consistently are biased toward lower left (risk-averse behavior) or the upper right (risk-prone

behavior) corners (Sheridan, 1992).

The next section illustrates some interesting situations that help understand the theory
introduced above. The following figures were produced using a web applet that demonstrates ROC
curves (http://wise.cgu.edu). The two distributions of N and S+N are shown in the left graph
(Figure 9). The right distribution of signal-plus-noise can be moved horizontally by dragging d'.
Likewise, the criterion value can be modified. The right graph is the ROC curve which is generated
automatically corresponding to chosen d' and criterion. Another way to produce the curve is to

determine hit and false alarm rates at the lower part of the applet. Doing so, both graphs will change

automatically to fit the input data.

Normal Distributions ROC This graph shows the Signal
— H Ln Absent and Sighal Present
Criterion =148 i distributions that are the basis of

eadr@g s

the signal detection theary model
aof decision making.

Signal Absent o 5 H] T m
Signal Present False Alarm Rate

False Alarms  |RGS 0.1 Set Hits and False Alarms |

Figure 9: An example of ROC curve applet (http://wise.cgu.edu)

As shown in Figure 9 one distribution is almost totally overlapping the other. Compatibly,

d' is small. In this situation, the observer's sensitivity is low and only a small hit rate is possible.
When the sensitivity is higher (Figure 10), the criterion efficiently discriminates between signal and
noise, high hit rate and low false alarm rate are achieved and the ROC curve passes close to the

upper left corner of the graph.

Mormal Distributions ROC The receiver-operating
— H i characteristic (ROC) plots the hit
Criterion =144 i rate {v-axis) againstthe false
codrages alarm rate fe-axis) for & given
FINEET) t = criterion and . An ROC
eadrages illustrates all possible respanse

criteria for a given sensitivity (d).
P

y

Signal Absent a F H] F] ]|
Signal Present False Alarm Rate

False Alarms S W Set Hits and False Alarms |

Figure 10: An example of high sensitivity of the observer (http://wise.cgu.edu)
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Figure 11 illustrates different locations of the criterion value. Actually, the ROC curve is a
cross plot of false alarm and hit rates. The dot on the curve is moving respectively with the
criterion's movement. Hit and false alarm rates monotonically increase as the criterion moves from
right to left and hit rate is always greater than false alarm rate (Brown & Davis, 2006). The goal is

to find the criterion value that gives the highest proportion of hit rate to false alarm rate, the optimal

likelihood ratio.

MNormal Distributions ROC [This graph shows the Signal

—— \Abhsent and Sional Present
Criterion =2.04
calrag e

distributions that are the basis of
the signal detection theory model
of decision making.
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Signal Present False Alarm Rate
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Figure 11: Different criterion values on the same ROC curve (http://wise.cgu.edu): 2.04 (a), 0.82 (b), -0.36 (c).
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2.8 Reaction time models

Signal detection theory, which was introduced above, provides a general framework to
describe decisions and how they should be made under uncertain conditions (Brown & Davis,
2006). Signal detection theory models provide an account of accuracy only, and are not concerned

with the time it takes the observer to make the decision' (Ratcliff & Smith, 2004).

“Reaction time, that is the time from the onset of a stimulus or signal to the initiation of
response, has been recognized as a potentially powerful means of relating mental events to
physical measures. ... More recent developments have enhanced the value of reaction time as a

measure rather than diminished it (Welford, 1980)”.

The relation between response time and accuracy is not constant; it varies according to
whether speed or accuracy of performance is emphasized and according to whether one response or
another is more probable or weighted more heavily (Ratcliff & Rouder, 1998). Therefore, previous

models have dealt with only one measure, accuracy or response time (Ratcliff & Rouder, 1998).

Various models were proposed to account for reaction time and accuracy. Ratcliff and
Rounder (1998) introduced the diffusion model which is a sequential-sampling model and can
explain the relationship between correct and error responses while at the same time fitting all the
other response time and response probability aspects of the data. Sequential sampling models are
unique in providing a way to understand both the speed and accuracy of performance within a

common theoretical framework (Ratcliff & Smith, 2004).

Ratcliff, Mckoon and Zandt (1999) also claim that the main difficulty in recent modeling is
that two dependent variables, reaction time and the probability of responses, must to be modeled in
the same integrated framework. They introduced connectionist models that explain how cognitive
tasks are learned. Learning is the result of many individual trials with stimuli, each trial with

feedback about whether the model's response was correct or not (Ratcliff et al., 1999).

Pike (1973) suggested that latency in response is some inverse function of distance from the
criteria, and that latency decreases with the distance. According to Pike (1973), successful

description of response latency is necessary for verification of the detection model.

" Response Time, Response Latency and Decision Time, refer to the common term Reaction Time, which is used to
describe the time it takes the observers to decide about an observed object.
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Murdock (1985) analyzed the strength-latency relationship and introduced a generic reaction
time model based on the distance-from-criteria of the observed object. He suggested that an
exponential function is the most reasonable to use in order to transfer the object’s strength, i.e.,
distance-from-criteria, into latency (Figure 12). Exponential functions can describe symmetrical

descendent of latency on both sides of the yes/no criterion (Murdock, 1985).

Figure 12: Signal (x) is normally distributed with criterion Xco. Exponential
transfer function maps signal strength into latency (t), and the resulting latency
distribution f{(t) is shown by the dots (Murdock, 1985).
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3 METHODOLOGY

3.1 Overview

This thesis continues a previous work of Bechar (2006) which focused on developing a
human-robot collaboration model for target recognition task. The objective function of the model
describes the system score for a given collaboration level and determines the best collaboration
level for a given set of parameters. This thesis expands the objective function of the model by
incorporating a function for human reaction time instead of a constant value. In this thesis, we
check the influence of the reaction time on the objective function score and the best collaboration

level.

A reaction time model is developed and integrated into the collaboration model. Numerical

and sensitivity analysis of the new model is conducted using simulated data.

3.2  Reaction time model development

The objective function of the model developed by Bechar (2006), takes into account the costs
related to the time it takes a human-robot system to perform a target detection task. Implementing a
detection procedure by the human consist of two stages. First, the human must decide whether an
object is target or not. The action on the second stage depends on the human decision and on the
collaboration level as follows. In some cases, the human needs to make a motoric action in order to
mark or unmark an object (e.g., confirming a robot recommendation in the HR collaboration level,
or canceling a wrong robot's mark in the HOR collaboration level). In other cases, the human does
not have to perform a motoric action (i.e., when the robot's recommendation is not a real target in
the HR collaboration level, or when the robot decided correct in the HOR collaboration level). The

time the first stage takes is the reaction time of the human.

Previous work (Bechar, 2006) considered a constant value for the reaction time. This research
introduces further development of the model taking into consideration the fact that the reaction time
of the human depends on the strength of the observed object (i.e., the distance of the observed
object from the cutoff point). In this research, we incorporate a reaction time model, based on

Murdock (1985), into Bechar’s model.

Furthermore, a mathematical development of a mean distance model is introduced. The model
is based on the signal detection theory model, and calculates the mean distance between the cutoff

point and objects of the same category (e.g., mean distance of all objects that were 'missed").
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3.3 Performance measures

This research uses the nine performance measures defined by Bechar (2006). Eight
performance measures represent the target identification possible outcomes. Four of them stand for
objects the robot marked as targets (i.e., hit, miss, false alarm and correct rejection) and the other
four stands for objects the robot did not mark. The ninth performance measure is the time required
for the human-robot integrated system to fulfill the task. The system objective function combines all

performance measures into a single parameter.

3.4 Numerical analysis

A numerical analysis is implemented on a personal computer with Matlab 7™, and detailed in
chapter 5. The objective is to determine the best collaboration levels for different human, robot, and

task characteristics, and to examine the influence of the time component.

The analysis is focused on three different system types. The first two types, introduced by
Oren (2007), give high emphasis of not causing one of the two possible errors in target recognition:
missing targets or making false alarms. The third type gives the same importance for all possible

outcomes.

3.5 Sensitivity analysis

The numerical analysis is conducted only for the cases in which the human and the robot
perform optimally, i1.e., optimal cutoff points of the human and the robot. The target detection
process of the robot is computerized and it is possible to adjust its cutoff point during the task
according to changes in the environment. On the other hand, an optimal cutoff point of the human is
less obvious and it is much more difficult to be manipulated. Therefore, the work includes an in-
depth sensitivity analysis of the human and robot cutoff points. The analysis shows how small
changes in the cutoff point position, influence the objective function score and the best

collaboration level.
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4 MODEL DEVELOPMENT

In this research, we incorporate a reaction time model, based on Murdock (1985), into
Bechar’s collaboration model (2006). According to Murdock (1985), reaction time depends on the
strength of the observed object. The strength of an object is relative to the distance of the observed
object’s value from the criteria. The distance of an object can be measured by the same units of the
measured object or by standard deviation units. Normalizing the signal and noise distributions helps
us to describe the problem in standard deviation units. It benefits in generalizing the problem rather
than using the actual units that fit only to a specific case. The cutoff point gets a different

interpretation for each normalized distribution. We denote the cutoff points as z; andz, for the

signal and the noise distributions, respectively.

X, — My X, — My

z — co . z — co

N ’ N
o Oy

A short review of the Normal and the Standard Normal distributions, as well as definitions of

signal and noise distributions is included in Appendix A.

For a matter of simplicity, all equations of the model will be defined first as functions of the

parameters zgandz,, and later on, for the numerical analysis, they will be expressed by the

likelihood ratio, B, between the signal and noise density functions in the cutoff point, x_ , and the

distance between the means of the signal and noise distributions, d'. See chapter 2.6 for details. All

expressions are included in Appendix B.
In this section, we introduce a development of a mean distance of all objects of the same

category (miss, hit, correct rejection, and false alarm). Then, we formulate the reaction time model

and incorporate it into the human-robot collaboration model.
4.1 Mean distance model

4.1.1 Mean x-values and distances in a normal distribution
In the recognition process, the system marks an object as a target if the object’s value is

higher than the cutoff point value (denoted asx, in Figure 13). We use the term ‘Positive
Response’ to describe objects that the system marks. Positive response can be either a hit, if the
object is a target; or a false alarm if it is not. The term ‘Negative Response’ describes objects with a
value lower than the cutoff point value, which the system does not mark as targets. A negative

response can be either a miss, if the object is a target; or a correct rejection if it is not. The mean x-

value of all negative responses is denoted as 1 , and the mean x-value of all positive responses is

denoted as 4, .
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Suppose X is normally distributed with a mean of x and a variance of o”. In order to find

the mean x-value, one must calculate the weighted average of all x-values of the same response,

where the weight is the frequency of x. The mean x-value depends on the cutoff point value, x_, .

f(x)

Normal Dist.

Eeo

Figure 13: Mean x-values and distances in normal distribution
The mean x-value equations for negative (4 ) and positive (4, ) responses are:

Xeo

| x )
lu—(xco) = === Uu- O_._(D(ZCO)
o(z,,)
| £ c
[ x- rs
% ¢(z,.,)
ﬂ+(xco) = ——=..=Uu+0 co
[ /s 1-a(,)
where h
~(-p)”
f(x): 1 e 207 ; z, = Xeo “H
o227 o

2

pO=pet 0= et

From the equations, it is obvious that g is lower and g, is higher than the mean of the

distribution x , also supported by Figure 13. Fully detailed development of the equations is included

in subchapters 4.1.2 and 4.1.3. Validation of the equations is presented in Appendix C.
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The distance of an object from the cutoff point is the absolute difference

x,, —x|. We use the
mean x-values to find the mean distances of negative and positive responses (denoted asd_, d,
respectively in Figure 13). By definition and as shown in Figure 13, ¢ <x, <, . For that reason,
we define the distances as a difference between the cutoff point and the appropriate mean x-value
where both distances get positive values: d_(x,) = x,—u , d.(x,) = 4, —x,

C

The mean distance equations for negative and positive responses are:

d(x,) = %, = = x,~(1- 6-%) = (3, — ) + a._zl’;(éw))
d+(xco) = ’qu_‘xco = (lu + ljoé)z(w) )) xco = _(xco_lu) + o-l_goé)z(co) )
where

Z = xLO_ILl

R |
e ? el dz

P)= 7= ; Q@:LﬁZ

In order to describe the problem by standard deviation units rather than by actual units, which

suit just a specific case, we define normalized distances based on the previous defined distances.

We divide each distance by the standard deviationo .

The mean normalized distance equations for negative and positive responses are:

©@z,) O @@,

co

d(x,)c =((xw—ﬂ) + g.g;(zw)j/a = (FaTHy 0Gz,) _ ., 9G)
o

A )0 =, v o L) oo Fahy G PG
1-d(z,,) o 1-D(z,) 1-D(z,)
where
. X
co J

2 2

1 -z

p(z)= N . D(2)= j m-ezczz

If we use the equations of the mean distance for standard normal distribution (4 =0, o =1)

with the appropriate cutoff point, Z

co

we get the same equations of the normalized distance.
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To simplify the equations, we use the following symmetric rules of the standard normal

distribution:

P(2) = ¢(-2)
D(z) = 1-DO(-2)
D(-z) = 1-D(2)

where

’ 1 -2
e 2 dz

-z
e ?

¢@=é; o= ] =

We define the function ®(z) :

Due to the symmetric rules, the function holds:

O(-z) = p(=z) _ 9(2)
DO(-z) 1-D(2)

We use ©O(z)to define again the normalized distances as:

Ao =z, + 28) o e,
@(z,,)

d(x)o = -z +- ) _ . ez
1-®(z,)

26



4.1.2 Mathematical development of Mean x-value of negative responses
In order to find the mean x-value, one must calculate the weighted average of all x-values of

the same response, where the weight is the frequency of x.

Feg Feg 1 ~(-p)?
Jx-f(x)dx J‘x- e 2 dx
s . OoN2x
p(x,) = = = = g =
co oo 1 X ,;l
J. S (x)dx J. e 27 dx
et . oN21

Changing the domain of integration :

sz—,u = x=u+o0z
o
dz dz
X0 > 7= My
o
xX=x, :>z=x”0_#=zw
o
z 1 ;22 z _z2
(u+oz) e? gdz (u+oz) e?dz
[wron pe [twra poerd

0 1 : 2
— d 2 d
| e N
ZJ.,U ezzdz+] oz ! e%dz ] ! eijdz ij ! eijdz
_ Lz R . 7 S

From the standard normal distribution :

2
-z

J. 1 erZ:(D(ZCO)

N
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1
N

2
-z

JZ'erZ

—0

ZL‘O

:ﬂ.

vy,

(z,,)

L
-1 I
J.u" e du=-e

Solving the integral :

—u"

n

Confirmation by derivng the answer :

o(—e ") AL ey
ou n
2 P —2,,2 —(—o)
1 - 1 2 2
——(—e? ——| —e —| —e
=u+o- —~ = u+o-
D(z,) D(z,)
A T
Vs
o(z,,) o(z,)
From the standard normal distribution :
T
e?dz=¢(z)
27
)
D(z,)
p(z,,)
X = -0 —
A0 =)
where
ZCO — xLU _ﬂ
o
o(z) = ! -e_TZ2 ;o D(2) =—1 je_;ldz
27 27 2,
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4.1.3 Mathematical development of Mean x-value of positive responses
In order to find the mean x-value, one must calculate the weighted average of all x-values of

the same response, where the weight is the frequency of x.

) © 1 —(x—,ét)2
x- f(x)dx X e 2 dx
xj x'[ o227
lLlJr (‘xco) = moo = moo 1 7()(7/1)2 =
[r@ae [ e
M .o 27
Changing the domain of integration :
=278 X=u+oz
o
dx d(u+
_XZM:G = dx=o0dz
dz dz
xX=x, = z:x”"_’u =z,
o
o

From the standard normal distribution :
Zeo 1 i
I e?dz=1-D(z,)

2z
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Solving the integral :

" "

J.u”’l e du=—en
Confirmation by derivng the answer :

—u
—u" n-1 —u"
o=e") . 2y e

ou n

= U+ ——m= = u+o

N )
1-®(z,,)
p(z,)
X )= u+o —L—
H(x,) = p I~
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;= Xeo TH
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4.1.4 Mean x-values and distances for signal and noise distributions
The equations that were developed for the normal distribution are adjusted to the signal and

noise distributions. The means and standard deviations of the signal and noise distributions are

respectively 1,0, and u, ,0,. Short reviews of Normal and Standard Normal distributions, as

well as definitions of signal and noise distributions are included in Appendix A.

i d

i)

Signal + Noise

Figure 14: Illustration of mean x-values and mean distances
The mean x-values and the mean distances are denoted as:

H,, - Mean x-value of undetected signals (miss)

M, - Mean x-value of detected signals (hit)

Hcr - Mean x-value of ignored noises (correct rejection)

MU, - Mean x-value of mistakenly detected noises (false alarm)

dy _ Distance from the cutoff point to mean x-value of undetected signals (miss)

dy Distance from the cutoff point to mean x-value of detected signals (hit)

dex Distance from the cutoff point to mean x-value of ignored noises (correct rejection)

dry Distance from the cutoff to mean x-value of mistakenly detected noises (false alarm)

Hit and miss are the possible outcomes of observing an object from the signal distribution
(i.e., the object is a target). False alarm and correct rejection are the possible outcomes of observing
an object from the noise distribution (i.e., the object is not a target). Hits and false alarms are

positive responses; misses and correct rejections are negative responses.
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In order to define equations for mean x-values, mean distances and normalized mean
distances of all four possible outcomes (miss, hit, correct rejection and false alarm), we used the
appropriate equations (for positive or negative responses) and parameters (mean and standard

deviation of signal or noise distributions):

_ o 9z)
/’IM (xc()) /LIS O-S —@(ZS)
P(zg)
=y +o, 2582
ll’lH (-xca) ,LlS GS 1_ q)(ZS)
I €Y
ILlCR (xco) ILIN O-N q)(ZN)
(zy)
@(zg)
d Y = (x. — n p(zg)
(%) = (%, = Hs) + O D(z,)

(z
dH(xC") = _(xco_uS)+GS.%
dog(x,) = (v, — 1) + oy - 20

) : D(zy)
z
dFA(xm) = _(xco_luN)-i_aN.%
P(zs)
d,(x ) o, =z, +
n i) =2 D(zy)
dy(x,)/ o5 = —ZS+M
co 1_®(ZS)
deg(x,)/ oy =2y + M
co @(ZN)
dFA(‘x*)/O-N :_ZN+LN)
co 1_®(ZN)
where
xLo _lLlS z _ 'xco _ﬂN
s = ; v =
GS GN
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4.2 Reaction time model
Murdock (1985) suggests an exponential function to transfer the object’s strength, i.e.,

distance-from-criteria, into latency. An exponential function can describe symmetrical descendent
of latency on both sides of the yes/no criterion (Murdock, 1985).

For negative responses, the distance and the reaction time functions are:

dx)=x,—x
t(x)=A4-e P

For positive responses, the distance and the reaction time functions are:

d(x)=x-x,
t(x)=A-e P07

Both functions are presented in Figure 15 and can be conjoined:

A-e P when x<x,,

1(x)=
A-e PC%) - otherwise

Noise Signal + Noise

kJ

Hx)= A g FF7=)

ki

XCI}

Figure 15: Reaction time function
In order to fit these functions to real data, the parameters 4 and B must be adjusted. Different

parameters values lead to different reaction time functions. One can define different values for

negative and positive responses.
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Suppose X is normally distributed with a mean of x and a variance of o’

X ~ (1,07). In order to find the mean reaction time, one must calculate weighted average

of all reaction times (results from x-values) of the same response. The weights are the frequencies

of x. The mean reaction time depends on the cutoff point value and denoted as 7 (x,,), 7, (x,) for

negative and positive responses, respectively.

The mean reaction time equations for negative and positive responses are (Murdock, 1985):

j {(x)- £ (x)dx j A-e P00 £(x)dx s
T(x,) = =+ == == de T .q’(z(g(; B)‘ o)
[ Fx)x [ Fxr)x
(100 fdr [ A-e™ . payax I
T.(x,) = * = =W=AJ”“2'_ﬁgéi®
[ f(oax [ £ “
where w m
I
S(x)= We

_Zz

X —U 1
— co . (D —
an o 5 (Z \/_'[

A fully detailed development of the equations is included in Appendix D.

When o =1, the equations are:

BZ
bz t—- - B
]-v_(xco) = A-e g 2 .—(D(ZCO )

D(z,)
BZ
T(x,) = Ao 2 170t B)
1-d(z,)
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Robot’s decision

Human’s decision

The distance functions and the reaction time functions both depend on the value of the cutoff

pointx_ . In our collaborative system, the robot observes the objects first followed by the human

operator. Accordingly, the human decides about two different types of objects: objects that the robot
already marked as targets; and objects the robot did not mark (Figure 16). The human uses two
different cutoff points, for the two types of objects. Therefore, two different reaction time functions

must be implemented.

Non-target Target

Non-target Non-target Target Target
P(.'I{h Ph’\h Pl\]h l:.Hh F(.'Krh Ph'\rh I:.I'Hrll PHrh
Non-target Target Non-target Target Non-target Target Non-target Target
Correct Rejec. False Alarm Miss Hit Correct Rejec. False Alarm Miss Hit
t ¢crh t pan t nh tyin t cRreh t rarh t ek t ik
Human’s decisions about objects un-marked by the robot Human’s decisions about objects marked by the robot

Figure 16: Reaction times flow chart

The means of reaction time are denoted as:

T,, - Mean reaction time of undetected signals (miss)

T,, - Mean reaction time of detected signals (hit)

T, - Mean reaction time of ignored noises (correct rejection)

T, - Mean reaction time of mistakenly detected noises (false alarm)

Same denotations with the index 74 and h (for instance, T, T,, etc.), will represent

7,

reaction times for objects the robot marked as targets and for those it did not, respectively (see

human decisions in Figure 16).
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The equations that were developed for the normal distribution are adjusted to the signal and
noise distributions. The means and standard deviations of the signal and noise distributions are
respectively u,,0, and u,,0,. We used the appropriate equations (for positive or negative
responses) and parameters (mean and standard deviation of signal or noise distributions) to define

equations for mean reaction time of all four possible outcomes (miss, hit, correct rejection and false

alarm):
Brog
1 gt e Boy)
(D(Zs)
B2 og?
TH _ A'ers‘Zs*' 2 .l—q)(ZS +B'US)
- ®(z,)
BZ_O_NZ
Ty = e T B0y
D(zy)
B0,
TFA _ A'eB-crN'ZN+ 2 '1—(D(ZN +B'GN)
1_CD(ZN)
where
ZS — xco _luS ’ ZN — xco _luN
Oy Oy
D(2) = L j‘ e}idz
N2 s,

When o =0, =1, the equations are:

~Bz+0 O(z = B)

T, = A-e
" O(zy)
T, - A.eB'Z“BTZ.—I_q’(ZS*B)
! 1-®(zy)
7o gty Py B)
CR

D(zy)
L e 2
FA l_q)(ZN)
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4.3 Collaboration model

The basis of the expanded model developed in this thesis are the four collaboration levels
between a human operator and a robot (see subchapter 0), and the objective function that describes
the expected value of system performance (see subchapter 2.6), as developed by Bechar (2006).

The objective function of the model as described by Bechar (2006) is:

Vi = NP [ By Py (Vg + Ve 4ty V) + (1= By )Py (Vg + Ve 41,1, )] +

+N B[ By (1=Fyy ) (Vi 4ty V) +(1=By )-(1=Fy ) -(Vyy + 14, V)] +
+N(1=Fs)-[ By By (Vi +Ve +lﬂ'Vt)+(]_PFAr)'PFAh (Ve +Ve +tF_AhI/t)] +
+N-(1=F)-[Pry (1= Py ) (Vg +tCﬂ'Vt)+(]_PFAr)'(I_PFAh)'(VCR +tc_Rh'Vz)]+tr v
Each of the human time variables (denoted as ¢,, or ¢,,) represents a superposition of a

decision time and a motoric time (denoted as ¢,,), in accordance with the collaboration level. The

decision times, previously considered as constants, are replaced with the mean reaction times

functions introduced in the previous page.

When the system operates at the R collaboration level, the robot fulfills the task all by itself

and all human time variables equal zero (there is no human intervening).

In the H collaboration level, the human does not use robot’s help and the time variables are:

Luw = TMh
L = Ty + 1y
Lern = TCRh

i = Tray + 1y

In the HR collaboration level, the robot recommends the human by indicating potential
targets. Then, the human confirms targets he thinks are real and marks extra targets the robot did
not indicate. The human does a motoric action (marking) if he thinks the robot recommended well.

The time variables are:
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In the HOR collaboration level, the human supervises the robot. The robot marks targets and
the human checks those marks. The human unmarks targets that are not real and marks extra targets
that the robot missed. In this case, the human does a motoric action (unmarking) only if he thinks
the robot made a mistake. The time variables are:

Lo =T
Hh :THh +1y

ran = Tran + 1y
i = Dy + 1y
L = Dy

Leran = Teren + 1ty
e = Tran

The (motoric) time it takes to physically mark or unmark an object depends on the system
interface and the environment conditions. Therefore, it should not vary between one object to

another and it is considered as constant.
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5 NUMERICAL ANALYSIS

A numerical analysis of the model was conducted using MatLab 7.1 (Appendix G details the
script code). The optimal cutoff points for the human and the robot were determined by numerical
computation. At the first stage, the objective function was calculated for a range of possible cutoff
points. Then, the cutoff points that yielded the highest objective function score were determined as
optimal cutoff points. The analysis of the model was performed for systems that work at the optimal
cutoff points. The objective function score was calculated for each possible combination of
parameters and variables, for each collaboration level. The best collaboration level is the level that

yields the highest objective function score for a given set of parameters’ value.

5.1 Model parameters

The objective function of the model consists of groups of parameters that describe the task,

the environment and the observers. Table 3 introduces the parameters and their values.

5.1.1 Task types and parameters

In some systems, as mines detection or medical examinations, not to miss a target is much
more important than the cost of making false alarms. In other systems, false alarms have high cost
and the system accept to hit fewer targets in order to cause fewer false alarms. The independent
parameters of the task were determined to describe different types of tasks and systems. Raising the
gain from a hit, for example, induces the observer to make more hits at the expense of more false

alarms. The value of costs can be easily changed into any monetary values.

Analysis was focused on three types of systems: Type [ system gives high priority for not
causing errors of the first type, i.e., detecting a target when a target does not exist (false alarm);
Type II system gives high priority for not causing errors of the second type, i.e., missing a target.
These two types were introduced by Oren et al. (2008). The different types of systems are
characterized by the gains and penalties for each outcome (V},, V,,, V,.,, V). For example, a high
penalty for false alarms, relatively to the other values, reduces the false alarm ratio. Similarly,
relatively high gain for hits reduces the cases of missing a target. System of Type /Il does not prefer
one type of error on another; therefore the values for all four possible outcomes are the same

(V,, ==V,, ==V, =V).Table 2 details the values for each type of system.

The time cost (¥} ) is the cost of one time unit of system operation. It includes the cost of the

human operator and the robot. In order to analyze the influence of time cost regardless of the system

type, it was set relatively to the gain for a hit (V, =V, - V,.2V,,). The ratio between the time cost and

the gain for a hit, V2V, , was set to the values: -80, -40, -20 (hour'l). For example, when V,, equals
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5 points, V, obtained the values: -400, -200, -100 points for an hour. The operational cost (V) is

the cost of the action conducted when the system detects a target, either if it is a hit or a false alarm.

For all analyses, this cost was set to 2 points.

The operational and time costs were arbitrarily predetermined in order to limit its influence on
the system decisions. The actual value of the gain-penalty-cost weights was less important in the
analysis than the ratio between all weights, which determine the task nature (e.g., whether it is more
important to detect melons, to reduce the number of false alarms or to finish the task in minimum
time). The parameters' values are consistent with the work of Bechar (2006) and Oren (2007) in

order to enable comparison.

Table 2: Gains and penalties for different types of systems

Typel Typell Type IIT
Vy 5 50 10
Vi -10 -10 -10
Vg -50 -5 -10
Ver 10 10 10

5.1.2 Environmental parameters

The parameters N and P, determine the environmental condition. The objective function
was calculated for 1,000 objects (targets, N ). The target probability ( F;) represents the fraction of
targets from all objects. Analysis was conducted for different probability values between 0.1 and
0.9. The mean of the noise distribution was set to zero. The mean of the signal distribution was a
positive number, which results from the value of the observer's sensitivity (d'), as can be seen in

Figure 18. The standard deviation of the distributions assumed to be one and other noise and signal

distribution should be normalized in order to fit the model.

5.1.3 Human parameters

The sensitivity represents the ability of the observer to distinguish between real targets and

the other objects. The sensitivity of the human (d'») was varied between 0.5 and 3.

The human motoric time (tMotor) of executing an action (i.e., marking an object as a target
or unmarking a robot’s mark) was set to 2 seconds. The decision time was calculated according to

the mean reaction time model (see chapter 4.2). The reaction time model is based on an exponential
function, #(x)=A-e *“~™ that includes two parameters. Parameter 4, which represents the

longest detection time, was set to 2, 5 or 10 seconds. Parameter B was set to 0, 0.5, 1, 1.5 or 2.
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These values represent variety of possible exponential functions (see Figure 23). When B receives

a zero value, the mean time is 4 .

5.1.4 Robot parameters

The sensitivity of the robot (d'~) was varied, same as human sensitivity, between 0.5 and 3.
The robot decision time (#) is negligible relatively to the other times and was set to 0.01 seconds

on average for one object.

Table 3: Model parameters’ values

Description Eange Constants Type dependent
TypeI | Type Il | Type I

Ve The gain from a hit 5 50 10
Vot The penalty from a miss -10 -10 -10
Fea | The penalty from a false alarm -50 -5 -10
Ve The gain from a cotrect rejection 10 10 10
¥ The operational cost -2

g The time cost [-80,-40,-20]

£y The probability of an object to be target [0.1,0.2,0.5,0.8,0.9]

N MNumber of obijects 1000

tMeator | The motoric time of the human 2

A Parameter of the response time function [2,5,10]

B Parameter of the response time function [0,0.5,1,1.5,2]
& The human’s sensitivity [05:0.5:3]
d'r The robot’s sensitivity [05:0.5:3]

tr The robot’s decision time 0.01

5.2 Graph generator

The data included three types of systems. A record was saved for every combination of values
of the six parameters that were not constant (see Table 3). To analyze the influence of parameters
on different components of the objective function, a graph generator was developed in MatLab
(Appendix G). The application that was developed, allows to select the system type, two parameters
(X, Y) and a function (one of the components of the overall objective function), and spreads sub-
graphs for every value of third parameter. The remained three more parameters are set manually

into one of their possible values. This graph generator enabled an easy comprehensive data analysis.

Figure 17 illustrates an example of graph selection. The example describes type II system and
the function that is shown is the optimal objective function (opt VIs). The sensitivities of the
human (d'») and the robot (d',) are varied along X and Y axes. A sub-graph is shown for every

value of the target probability ( £ ). The other three parameters ( B, A, vI'2vH ) are set manually.
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The user can choose a system type (a), an objective function (b)

two parameters for X and Y axes

and a third parameter for the sub graphs (c), and set manually the values of the three other parameters (d).
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5.3 Cutoff point analysis

When the sensitivity of the human operator is high, the human operator can distinguish
between targets. The optimal cutoff point is between the means of the noise and signal distribution
(Figure 18, a). When the sensitivity is low, the ability to distinguish reduces and it becomes more
effective not to examine the objects and decide the same for all of them. The optimal cutoff point,
therefore, goes to the extreme. When the system gives high priority to not causing false alarms
(Type 1), the cutoff point will be set to infinity, and none of the objects will be marked as targets
(Figure 18, b). When there is high priority of not missing a target (Type II), the cutoff point will be

set to minus infinity.
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Figure 18: A cutoff point between the distributions’ means when the sensetivity
is high (a) and extreme cutoff point selection when sensitivity is low (b).

This influence finds expression in the analysis, regardless of the response time costs of the
observer. The time costs amplify this phenomenon. The mean response time reduces as the cutoff
point is far from the mean of the distribution; therefore, in the sense of time costs, extreme” cutoff

point is always preferred.

In the analysis, the mean of the noise distribution is set to zero. Therefore, the sensitivity of
the observer, that represents the distance between the noise and the signal distributions, is also the

mean of the signal distribution.

In the following part, the optimal cutoff point for the human, in the H collaboration level, is
presented for each of the three types of systems. The influence of the cutoff point position on other
parts of the objective function is demonstrated. The graphs in this part exhibit relevant functions
against the human sensitivity (d ') and the cost of time unit (v7'2vH ). The analysis was conducted

for Ps=0.5, A=2, B=0.5, dr=0.5.

Results for other probabilities for target ( Ps) as well as the influence of the time cost

(vT'2vH ) and the time parameter 4 are detailed in Appendix E.

* The ‘extremes’ in this data set are -3 and 6. Explanation is detailed in chapter 6.
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5.3.1 Human optimal cutoff point influence in Type I systems
Type I systems give high priority for not causing false alarms. When the human has low

sensitivity, it is expected to get the highest value possible for the optimal cutoff point. Figure 19(a)
shows the optimal cutoff point of the human. When the sensitivity of the human (d'#) is low, the

optimal cutoff point value rises to six (the highest value possible).

Furthermore, the analysis shows that the total penalty for false alarms grows (in negative
values) as the sensitivity of the observer decreases (Figure 19, b). This phenomenon exists up to the
point where the sensitivity is too small. Then, an extreme positive cutoff point is preferred and the
human marks less objects as targets. Therefore, the total penalty for false alarms decreases as was

expected in Type I systems.

Extreme cutoff point results in redundancy of system operation time. As the cutoff point is
drawn away from the means of the distribution (see Figure 18, b), the distance of the objects from
the cutoff point increases; and the mean response time, correspondingly, decreases. Figure 19(c)

shows the redundancy of the system operation time for low human sensitivity.
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Figure 19: Optimal cutoff point of the human (a), total penalty of false alarms (b), and system operation time (c)
in Type I system at the H collaboration level. The human sensitivity and the time cost are ranged along x and y axes.

5.3.2 Human optimal cutoff point influence in Type Il systems
Type II systems give high priority for not missing targets. When the human has low

sensitivity, it is expected to get the lowest value possible for the optimal cutoff point. Figure 20(a)
shows the optimal cutoff point of the human. When the sensitivity of the human (d ') is low, the

optimal cutoff point value is minus three (the lowest value possible).

The analysis shows that the total penalty for misses grows (in negative values) as the
sensitivity of the observer decreases (Figure 20, b). This phenomenon exists up to the point where
the observer sensitivity is too small. Then, an extreme negative cutoff point is preferred and the
human marks more objects as targets. Therefore, the total penalty for miss decreases as was
expected in Type II systems.
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As was explained for type I, extreme cutoff point results in redundancy of system operation
time. Figure 20(c) shows the redundancy of the system operation time when the sensitivity of the

human decreases and an extreme cutoff point is preferred.

Optimal cutoff point
Total penalty of misses

Bystem operation time

dh 0 -0.03 VT

Figure 20: Optimal cutoff point of the human (a), total penalty of misses (b), and system operation time (c)
in Type II system at the H collaboration level. Human sensitivity and the time cost are ranged along x and y axes.

5.3.3 Human optimal cutoff point influence in Type IlI systems

In type III systems, the gains and penalties are equal for all outcomes, there is no preferable
error and the cutoff point remains between the means of the distributions even when the sensitivity
of the observer is low. Figure 21(a) shows the optimal cutoff point of the human. The optimal cutoff
point gets values that are approximately half of the sensitivity (e.g., when d'»= 3, the cutoff point
is 1.6). The sensitivity is the distance between the distributions and it shows that the cutoff point is

approximately in the middle of the distributions.

As was explained before, the total penalty for misses and the total penalty for false alarms
grow, as the sensitivity of the observer decreases. In systems of type III, as was introduced above,
the optimal cutoff point is between the distributions and no extreme cutoff point is preferred.
Therefore, the total penalties for misses and false alarms continue to decrease for low sensitivities

as shown in Figure 21(b,c).

000 4.+

200007

Optirmal cutoff point
Total penalty of misses

Total penalty of FAs

£0.02
dh 0 003 VT2 dh 0 003 oM dh 0003

Figure 21: Optimal cutoff point of the human (a), total penalty of misses (b), and total penalty of false alarms (c)
in Type III system at the H collaboration level. Human sensitivity and the time cost are ranged along x and y axes.
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5.4 Human’s dominancy analysis

In the H collaboration level, the human operator operates solely. The human becomes less
dominant as the level of autonomy of the robot increases. In the R collaboration level, when the

robot is fully autonomous, the human has no influence.

The human operations cause an increase in operation time and costs. The human response
time and motoric time are significantly higher than the robot decision time. Therefore, in the sense
of time costs, it is reasonable that evolving a human in the recognition process will be less

profitable when the time cost is high.

The following graphs present decrease in human dominance, as the response time of the
human and the time cost increase. In the graphs, a single collaboration level dominates each zone
(each color represents different operating level: H- blue, HR- cyan, HOR- yellow and R- red). The
graphs present the collaboration level required to achieve the best system performance. The

sensitivities of the human (d'/) and the robot (d ') are ranged along X and Y axes.

Figure 22(a-c) shows how human dominance reduces as the time cost increases. The time cost
increases from graph 'a' (vI'2vH =—0.0055) to graph 'c' (vI'2vH =—0.0222). Accordingly, the area
of the HR (cyan) and HOR (yellow) collaboration levels diminished. In this specific case, the area
decreases from 92% in graph 'a' to 60% in graph 'c'. In other cases, the area decreases in a different

rate.

1 15 2 25 2 25 2
dr dr

(a) vI2H =-00055556 (b) VT2H=-0011111 (c) oM =-0.022222

Figure 22: Human dominance reduces as the time cost increases from graph 'a' to graph 'c'.
A=10,B=0.5 Ps=0.2
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The reaction time model is based on an exponential function, #(x)=A-e "™ that includes

two parameters: parameter 4, that determines the height of the function at the cutoff point, and

parameter B . The reaction time increases, as 4 increases and B decreases (see Figure 23).
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Figure 23: The response time function (y-axis) for different values of B parameter.
A=1, X, =0

Figure 24(a-c) shows how human dominance reduces as the time parameter 4 increases. The
time parameter increases from graph 'a' (4=2) to graph 'c' (A=10). Accordingly, the area of the
HR (cyan) and HOR (yellow) collaboration levels diminished. Figure 25(a-e) shows how human
dominance reduces as the time parameter B increases. The time parameter decreases from graph 'a’
(B=2) to graph 'e' (B=0). Accordingly, the area of the HR and HOR collaboration levels
diminished. In this specific case, the area decreases from 94% in graph 'a' to 6% in graph 'e'. In
other cases, the area decreases in a different rate. Analysis shows that in some cases the
collaboration with a human is not profitable in most of the combinations of human and robot
sensitivities. In these cases, the use of a simpler system without an option for collaboration should

be considered.

®

(@) aA=2 (b) A=s

Figure 24: Human dominance reduces as the response time increases from graph 'a' to graph 'c'.
vI2vH =—-0.022, B=0.5, Ps =0.2
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15 2 25 . 15
dr

dr
(d) B=0s (g) B=0

Figure 25: Human dominance reduces as the mean response time increases from graph 'a' to graph 'e'.
vI2vH =—-0.022, A=10, Ps=0.2
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6 SENSITIVITY ANALYSIS

The numerical analysis of the collaboration model was conducted for optimal cutoff points.
Sensitivity analysis of human and robot's cutoff points was performed in order to show how small
deviation from the optimal values influences the system's objective function score and the optimal
collaboration level. Specifically, we focused on the cases where small deviations from the human

optimal cutoff point cause a shift in the optimal collaboration level.

The analysis was conducted for all three cutoff points: cutoff point of the robot (Xco,) and
two cutoff points of the human for targets the robot already marked and for targets it did not mark

(Xcor and Xcop respectively). In each case analyzed, only one cutoff point was changed.

In the analysis, the signal and noise distributions are normalized. The mean of the noise

distribution is zero and the maximum sensitivity (d'- or d'x), which is also the position of the

signal distribution mean, is three. Therefore, in order to show all possible positions, the cutoff
points' value ranged from minus three to six (i.e., three standard deviation units from the means of

the distributions).

6.1 General description and general conclusions

This section gives general description of the figures, which are shown ahead, and introduces

some common phenomena. Figure 26 is used as an example.

Each of the following figures represents a single optimal case for a given set of parameters.
One can notice that in Figure 26 there is one graph for each of the three cutoff points (Xcon, Xcor
and Xcor from left to right). The y-axe represents the system's objective function score. In each
graph, four lines illustrate how the objective function value varies according to the change of the
cutoff point value. Each line represents one of the four collaboration levels (H-blue, HR-cyan,
HOR-yellow and R-red). A black circle marks the optimal cutoff point value on the best
collaboration level line (the highest point). In this specific case, the objective function score is 7268
and the optimal cutoff point values are Xcon=1.2, Xcom=0.8 and Xco=-1.6. The other parameter's

values (dr,dh, Ps, A, B,vT 2vH ) are shown in the header of the figure.

One can see that only the cutoff point of the robot affects the score of the R collaboration
level (notice straight red line in the left and middle graphs in Figure 26). Similarly, only the cutoff
point of the human, Xcop, affects the score of the H collaboration level (straight blue line in the
middle and right graphs). The scores of the HR and HOR collaboration levels are affected from all

three cutoff points.

In some cases, small deviation from the optimal cutoff point makes only a slight different in

the objective function value (notice almost straight yellow line in left graph in Figure 26). In other
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cases, small deviation from the optimum causes a dramatic decrease of the objective function value.
If the score of the best collaboration level decreases beneath other collaboration level score, the
second level becomes the current best collaboration level (e.g., the yellow line in the middle graph

in Figure 26 decreases beneath the blue line). We denote this: a 'shift' in the best collaboration level.

In many of the analyzed cases, the optimal level yields a score that is only slightly better than
another collaboration level score. Particularly, the HR and HOR levels yield almost the same score

at the optimal cutoff points (see all following figures at this chapter).
6.2 Type IlI systems

6.2.1 Cutoff points analysis

6.2.1.1 Analysis of the optimal cutoff point of the robot
In all cases, a change in the value of the robot's cutoff point makes more influence on the

score of the R collaboration level than on the other levels' score. Therefore, when R is the best
collaboration level, a smaller deviation from the optimal Xco, may cause best level shifting (i.e.,

smaller than deviations from Xcor when R is not the best collaboration level).

When the best collaboration level is HR or HOR, small deviations from the optimal Xcor

usually reduce the objective function score symmetrically in both directions.

6.2.1.2 Cases where the robot is more sensitive than the human operator

In most of the cases when the robot is more sensitive than the human (d'->d’'»), R is the
best collaboration level. In other cases, HOR is the best collaboration level but it usually has only
slightly higher score then R. For all cases, a small deviation from the optimal cutoff point does not

cause a shift in the best collaboration level.

6.2.1.3 Cases where the human operator is remarkably more sensitive than the robot
In this work, we assumed that collaboration is beneficial because the human performs better

than the robot in unstructured environments. Therefore, most of the analysis was focused on cases
where the human is more sensitive than the robot. The sensitivities of the human (d’'#) and the
robot (d'-) were varied between 0 and 3. We denote that the human is remarkably more sensitive

than the robot in cases where 1.5 <d'»—d' . In cases where 0 <d'»—d'-<1.5 we denote that, the

human is unremarkably more sensitive than the robot.

In most of the cases, when the human is remarkably more sensitive than the robot, the best
collaboration level is HR or HOR. The difference between their score, near the optimal cutoff point,

is relatively small. A small deviation from the optimal cutoff point of the human, Xcon, does not
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cause a shift in the best collaboration level. However, a small deviation from the optimal Xcom

enforces best level shifting to H (Figure 26).
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Figure 26: Example of Type III system's score in a case where the human is remarkably more sensitive than the robot.

6.2.1.4 Cases where the human operator is unremarkably more sensitive than the robot

In most of the cases, when the human is unremarkably more sensitive than the robot
(0<d'n—d'~<1.5), the best collaboration level is HR or HOR. The analysis reveals different

results for high, medium and low probabilities for an object to be a target ( Ps).

Figure 27 shows one of these cases where the probability for an object to be a target is high
(Ps=0.9). A small deviation from the optimal cutoff point of the human, Xcop, reduces the system
score and may cause a level shifting to R. A change from the optimal value of the second cutoff
point, Xcom, may change the best collaboration level only if the deviation is in the positive
direction. A deviation in the negative direction slightly reduces the system score but does not cause

a shift in the best collaboration level.

Figure 28 shows a case where the probability for an object to be a target is low (Ps =0.1). In
this case, a small deviation from the optimal Xcop, may change the best collaboration level only if
the deviation is in the negative direction. A deviation in the positive direction slightly reduces the
system score but does not cause a shift in the best collaboration level. A change from the optimal

value Xcom, reduces the system score and may cause level shifting.

Figure 29 shows a case where the probability for an object to be a target is medium
(Ps=0.5). A small deviation from optimal Xcon, in the negative direction may change the best

collaboration level. On the other hand, a small deviation in the positive direction reduces the system
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optimal value

score but does not cause a shift in the best collaboration level. Deviations from the

Xcorh, behave the opposite way.
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Figure 27: Example of Type III system's score in a case where the human is unremarkably
more sensitive than the robot and the probability for a target is high.
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Figure 28: Example of Type III system's score in a case where the human is unremarkably
more sensitive than the robot and the probability for a target is low.
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Figure 29: Example of Type III system's score in a case where the human is unremarkably
more sensitive than the robot and the probability for a target is medium.

6.2.2 Influence of the probability for an object to be a target (Ps)

Generally, for all system types and in all collaboration levels, the system objective function's
score reduces more sharp when the deviation from the optimal cutoff point is in one direction than
when is in the other direction. The direction depends on the probability for an object to be a target.
For a matter of simplicity, we assume in the following discussion that all system's gains and
penalties of the four possible outcomes are equal.

In signal detection theory, when the cutoff point moves from the optimal point in the positive
direction, the score reduces because more false alarms occur (also, fewer targets are missed, but it
affects the score less). When the cutoff point moves from the optimal point in the negative
direction, the score reduces because more targets are missed (also, fewer false alarms occur, but it
affects the score less). See Figure 6 and Figure 7.

If more objects are targets ( Ps =0.9), then usually the probability for miss is more than the
probability for false alarm. Therefore, the score reduces more sharp if the deviation from the
optimal cutoff point is in the negative direction (see Figure 30 for example). When less objects are
targets ( Ps =0.1), the probability for false alarm is usually more than the probability for miss. In

this case, the score reduces sharper if the deviation from the optimal cutoff point is in the positive

direction (see Figure 31 for example).
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6.2.3 Influence of the time parameters

In the following part, we analyze cases where human reaction time is expensive and long. It

occurs when the time parameters values are: A =10, B=0.5, v 2vH =—0.022 . The human reaction

time in our model depends on the distance of objects value from the cutoff point value. When the

cutoff point is far from an object, it takes less time to decide whether it is a target or not.

6.2.3.1 New collaboration levels

The analysis reveals new collaboration levels, which are derived from the original levels HOR
and HR and preferred when the reaction time of the human is expensive. The analysis reveals

different results for high and low probabilities for an object to be a target ( Ps).

Figure 30 shows a case where the probability for a target is high ( Ps=0.9) and HOR is the
best collaboration level. In practice, the way of collaboration is different from HOR. One can see
that the cutoff point of the human for targets that the robot already marked, Xcom, is set to the
lowest value possible in the data set (-3). It means that the human keeps all the marks on targets that
the robot detected, without spending time on rechecking them. The human concentrates only on

detecting targets that the robot did not mark.

In addition, a small deviation from the optimal cutoff point of the human, Xcop, enforces best
level shifting to R. Although the human is much more sensitive, if he does not operate according to
the optimal cutoff point, the system operates better without collaboration with the human. This is

probably because of the high cost of human time.
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Figure 30: Example of Type III system's score in a case where the human reaction time
is expensive and the probability for a target is high.
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Figure 31 shows a case where the probability for a target is low ( Ps =0./) and HR is the best
collaboration level. In this case, the collaboration is also different. One can see that the cutoff point
of the human for targets that the robot did not marked, Xcon, is set to the highest value possible in
the data set (6). This implies that the human concentrates only on rechecking the robot's
recommendations for targets. The human does not spend time trying to detect other targets that the

robot did not recommend.

Typelll_s dr=1.5 dh=3 Ps=01 A=10 B=0.5 ¥TavH=-0.022 | Best CL=HR

£ 3>

- — —— — —

2000 = —F / -

Wl

-2000 |- 1+ 1 /

-10000 |- 1+ 4 HR |
HOR
 —

Heo h

0

2
¥corh

2
Xcor

Figure 31: Example of Type III system's score in a case where the human reaction time
is expensive and the probability for a target is low.

In both cases, due to high human time costs, the best way to collaborate is that the human will
concentrate only on one type of objects. When many objects are targets (Ps=0.9) the human
observes only objects that the robot did not mark. The human does not need to remark the objects
that the robot already marked because this is an inherent property of the HOR collaboration level.
When only few of the objects are targets ( Ps =0.1), the human observes only objects that the robot

already marked.

Practically the system created new collaboration levels that are derived from the HR and HOR
collaboration levels. By ignoring one type of objects by the human, the system reduces the total

human reaction time cost and can achieve better performance.

6.2.3.2 The system is more sensitive to changes when the time cost is high
As human's reaction time costs increases (and takes longer), the score of the collaboration

levels, which include the human, reduces. The score of the R collaboration level is not affected by
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the reaction time cost. Therefore, the difference between the scores of the best collaboration level
and the R level reduces. Hence, in many cases when the time cost is high, the system becomes more
sensitive to changes in human cutoff points' values. The case when the best level shifts to R,

becomes more common.

6.2.3.3 Constant time parameters
Previous work (Bechar, 2006) assumed that the decision time of the human is equal for all

objects. In this work, we introduce a reaction time model that unties this assumption. In the data set,

when B =0 the time parameters are constant for all objects (as in previous work).

As long as the total cost of human reaction time is not expensive (relatively to other costs of
the system), the question whether the time parameters are constant or not, does not make much
difference neither in system's objective function value, nor in the best collaboration level. However,
when human reaction time becomes relatively expensive, constant time parameters leads to quite
different results. The lower part of Figure 32 shows the case of Figure 31 and the upper part shows
the same case but with parameter B equals zero. One can see that the scores of the collaboration

levels that include the human are lower when B =0and the best collaboration level is R. In this
specific case, the score reduced in 1642 points, which are 24%. In other cases, the score reduces in a

different rate.
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Figure 32: Example of Type III system's score in a case where the human reaction time is expensive
and the probability for a target is low. A comparison with constant time parameters ( B =0 ) is presented.
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6.3 Type I systems

Systems of type I give high priority for not causing errors of the first type, i.e., detecting a

target when a target does not exist (false alarm).

In type III system, R is the best collaboration level in most cases where the robot is more
sensitive than the human. In type I system, R is the best collaboration level only if the robot is
remarkably more sensitive (/<d'r—d'x). If the robot is unremarkably more sensitive than the

human, then HR or HOR are the best collaboration level.

When the human is more sensitive than the robot and the probability for an object to be a
target is high ( Ps =0.9), the system score is more sensitive to deviations from the optimal values
(relatively to type III system). A small deviation from the optimal cutoff point, Xcon, reduces the
system score and may cause a level shifting to R only if the deviation is in the negative direction. A
change from the optimal value of the second cutoff point, Xcosm, may change the best collaboration
level if the deviation is in the positive direction. A deviation in the negative direction reduces the
system score but does not cause a shift in the best collaboration level. Figure 33 shows a

comparison between type I and type III systems in the case that is introduced above.

When the probability for an object to be a target is low ( Ps =0.1), the difference between the
collaboration levels scores is very small. A small deviation from the optimal cutoff points' values
may cause a best level shifting but the score remains almost the same. This is true even if the human
1s much more sensitive than the robot (see Figure 34). When the probability for an object to be a

target is medium ( Ps =0.5), the results are similar to those of type III system.

Analysis of type III system revealed new collaboration level in cases where human reaction
time is expensive. In type I system this phenomena occurs less often. It occurs only when the
probability for an object to be a target is low ( Ps =0.1), or when the human is no more sensitive

than the robot.
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Figure 33: Comparison between Type I and Type III systems' score in a case where
the human is more sensitive than the robot and the probability for a target is high.
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Figure 34: Example of Type I system's score in a case where the probability
for a target is low and the difference between the collaboration levels scores is small.
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6.4 Type II systems

Systems of type II give high priority for not causing errors of the second type, i.e., missing a
target. Systems of type III do not prefer one type of error on another. In type II system, R is the best

collaboration level in most cases where the robot is more sensitive than the human is, as in type IIL

When the human is more sensitive than the robot and the probability for an object to be a
target is high (Ps =0.9), the difference between the collaboration levels scores is very small. A
small deviation from the optimal cutoff points' values may cause a best level shifting but the score
remains almost the same. This is true even if the human is much more sensitive than the robot (see
Figure 35). When the probability for an object to be a target is low or medium (Ps equals 0.1 or

0.5), the results are similar to those of type III system.

Same new collaboration levels come out in type II system in cases where human reaction time
is expensive. However, it occurs for relatively lower cost of human reaction time than in type III.
The reason for that is probably the fact that the time cost is set relatively to the reward of one hit.
The reward for a hit in type II system is five times more than the reward in type III system and

therefore the comparison is not reliable.
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Figure 35: Example of Type II system's score in a case where the probability
for a target is high and the difference between the collaboration levels scores is small.
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7  CONCLUSIONS AND FUTURE RESEARCH

7.1 Conclusions

Bechar (2006) developed a model for evaluating performance of human-robot collaborative
target recognition systems. This work introduces further development of the model by incorporating
non-constant reaction times. The new model, proposed in this research, might describe actual
systems in a better way by adjusting time parameters to a specific task and taking into consideration
the fact that reaction time of the human depends on the strength of the observed object. Evaluating
the best collaboration level according to the new model, considers the influence of human reaction

time on system performance.

The analysis revealed additional collaboration levels, which are derived from the HR and
HOR collaboration levels defined in Bechar’s work (Bechar, 2006), and are the best collaboration
level when human time costs are high. In these collaboration levels, the human concentrates only on
one type of objects. When many objects are targets, the human observes only objects that the robot
did not mark and does not check objects that the robot marked (based on the HOR collaboration
level). When only few of the objects are targets, the human observes only objects that the robot
recommended and does not try to detect other targets (based on the HR collaboration level). Since
the human ignores one type of objects, the system reduces the total human reaction time cost and

can achieve better performance.

The human ignores objects by setting his/her cutoff point to an extreme value. When the
cutoff point is the highest positive value possible, none of the objects is higher than the cutoff point
so none of them is marked as a target. Similarly, when the cutoff point value is the lowest possible,
all the objects are marked as targets. The analysis shows how the system type, the human
sensitivity, the probability of an object to be a target, and the time cost all influence the phenomena

of extreme cutoff point selection.

When the human sensitivity is low, the human badly discriminates between targets and other
objects. If the system gives high priority for not causing false alarms (type I systems), the human
prefers an extreme positive cutoff point, resulting in no objects that are marked as targets, and no
false alarms. For systems that give high priority for not missing targets (type Il systems), an
extreme negative cutoff point was preferred, resulting in all objects marked as targets and no

misses.

The probability of an object to be a target ( Ps) influences this phenomenon. In type II
systems, when there are many targets among the objects (i.e., Ps is high), the system prefers

extreme cutoff point for higher sensitivities of the human (relatively to low sensitivities in cases
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where Ps is not high and an extreme cutoff point is preferred). In a similar manner, when most of
the objects are not targets (i.e., Ps is low), in type I systems, an extreme cutoff point is preferred
for higher sensitivities of the human. A reasonable explanation for this influence is the potential of
misses or false alarms to occur. When there are many targets, the potential of missing a target is

higher; and when there are few targets, the potential of false alarms is high.

The analysis shows that mean reaction time and time costs affect the position of the optimal
cutoff point. The phenomenon, introduced above, arises for higher human sensitivities as the mean
time and/or the time cost are higher. Furthermore, the analysis shows that collaboration with a
human is less profitable in cases when the time cost is high. In these cases, the R collaboration

level, that does not include a human, is the optimal collaboration level.

An extreme cutoff point position decreases the total operation time cost. The mean response
time reduces as the cutoff point is far from the mean of the distribution; therefore, in the sense of

time costs, the extreme cutoff point is always preferred.

The position of the cutoff point influences all other parts of the objective function. An
extreme positive cutoff point, for example, causes small probabilities of false alarms and hits; and
causes high probabilities of miss and correct rejections. The overall gains and penalties of these

outcomes are modified accordingly.

7.2  Research limitations

It must be noted that although this research includes an in-depth analysis of the new objective
function, it was impossible to analyze and investigate all possible variables' combinations due to the
multitude of variables that are involved. Hence, the thesis presents the most common trends and the

conclusions are limited to the analyzed cases.

Furthermore, the results are strongly linked to the analyzed cases because of the high
dependency on the many parameters. Therefore, we presented only trends and did not detail

quantitative results, which are specific and highly depend on the chosen parameters.

This work focused only on the optimal collaboration level. In some cases, the optimal level
yields a score that is only slightly better than another collaboration level score. In addition,
switching the level of operation during the task is related to some operational costs. Hence, it might
not always be worthy to operate at the best level. The analysis and conclusions are therefore limited

also in this aspect.
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7.3 Definition of the new collaboration levels

The research discovered a phenomenon, in which the human ignores objects by setting his
cutoff point to an extreme value. An in-depth analysis of this phenomenon revealed two new
collaboration levels, which are derived from the HR and the HOR collaboration levels defined in
Bechar’s work (Bechar, 2006), and are the best collaboration level when the human time cost is
high. In each of the new collaboration levels, the human observes only one type of objects and

ignores another. The new collaboration levels can be defined as follows.

HR2: The human operator observes only objects that the robot recommended to mark as
targets. The human acknowledges the robot’s correct detections and ignores recommendations that
are false alarms. The human operator cannot mark other targets, which the robot did not

recommend.

HOR2: Targets are identified and marked automatically by the robot’s detection algorithm
and the human operator cannot change these marks. The human operator assignment is to detect and

mark the targets missed by the robot.

7.4  Future research

The following directions are worthy future investigation:

7.4.1 Determination of the Reaction time type: constant versus variable

This research analyzes the influence of human reaction time in human robot collaborative
systems. Different aspects of the influence were discussed, but one question remained unanswered:
When is it essential to regard reaction time as a variable, while designing or analyzing a system, and
when can it be considered as constant? One of the three terms should occur in order to determine
reaction time as a constant: 1) when the contribution of the reaction time part to the objective
function is small relative to the other parts; 2) the difference between the objective function scores
when using reaction time as a variable or a constant is small; and 3) when the involvement of the
human operation is small. In some cases, considering constant time parameters will most likely
produce a good estimation of system performance. However, in other cases, e.g., when the cost of
system operation time is high, modeling reaction time is probably essential. Future research should

answer this question and differentiate between those cases.
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7.4.2 New/additional collaboration levels

The analysis revealed two new collaboration levels and future research should investigate
these further. These collaboration levels are derived from the HR and HOR collaboration levels by
adjusting one of the human cutoff points to extreme positive or negative value. In practice, although
the optimal cutoff point should make the human concentrate only on one type of objects, the human
might not operate optimally and therefore, might spend time and efforts on the other type of objects.
Systems that officially include these two new collaboration levels as part of other levels may
perform better. Future research should investigate in what cases these collaboration levels are the

best collaboration level.

7.4.3 Experiment of human reaction time influence

This work included a preliminary analysis of human reaction time based on data acquired in
an experiment conducted by Bechar (2006). Bechar (2006) conducted an experiment simulating
melon detection in order to examine the influence of different human-robot collaboration levels in a
target recognition task. During the experiment, all human operations were recorded. In this work,
we analyzed experimental data, focusing on the human reaction time and regarding them as
variables. We showed the relation between image complexity and decision time of the human
operator (see Appendix H). However, since this work was very limited in scope it is included only

as an Appendix.

An experiment of target recognition, specially designed to examine human reaction time,
should check how time pressure on the subjects influences their performance. It can also discover

how well the reaction time model of Murdock (1985) and other models, describe reaction time.

7.4.4 Examination of different reaction time models

This research used a reaction time model based on Murdock (1985). Other models describe
reaction time differently. Future research can examine other models and validate them with
experiments. The examination can discover how the influence of human reaction time depends on

the reaction time model; and what phenomena do not depend on the models.

7.4.5 Analytical development of an optimal cutoff point
The new model, proposed in this research, includes a reaction time function that depends on

the cutoff point position. Signal detection theory does not apply to this time function, and therefore,
the optimal cutoff point that the theory supply must be adjusted. A further study may provide
analytical development of the new optimal cutoff point. One must calculate a derivative of the

objective function in order to find the cutoff point results in the maximum value.
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7.4.6  Use of mean distances to evaluate mean reaction times
This study includes analytical development of the mean distance model, which calculates the

mean distance between the cutoff point and objects of the same category (e.g., mean distance of all
objects that were 'missed’). Future research can investigate the use of the mean distance model to

evaluate mean time.

7.4.7 Collaboration level switching
This work focused only on the optimal collaboration level. Future research should apply full

system optimization, which should consider the cost of switching between levels (Takach, 2008)

and not only the cost of operating at the best collaboration level.

7.4.8 Collaboration in other stages of human information processing

Parasuraman et al. (2000) introduce a four-stage model of human information processing (see
subchapter 0). The four stages in the model are: (1) information acquisition, (2) information
analysis, (3) decision and action selection, and (4) action implementation. In this thesis, we
introduce a collaboration model only for the decision and action selection stage. Future work should

investigate levels of collaboration for the other stages.

7.4.9 Additional analysis
Due to the multitude variables in the model, there are numerous combinations and cases to

analyze. This thesis presents the most common trends and additional analyses are required.
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APPENDIX A - NORMAL, STANDARD NORMAL, SIGNAL AND NOISE DISTRIBUTIONS

1. Normal distribution

Here is a short review of the Normal distribution, also called Gaussian distribution.

If X is normally distributed with mean x, and variance &,’ we denote:

X~ Ly O-Xz)
The probability density function (PDF) is:

()
20y

fX(x): O'X\/E

The cumulative density function (CDF) is:

F,(x)= [O fo(r)dx = aX\I/E J;e 200 gy

2. Standard normal distribution
The standard normal distribution is a normal distribution with a mean of zero and a variance
of one. If X is normally distributed with mean 4, and variance o,’, we can normalize X by
defining new random variable Z:

= x_ﬂX
O-X

= u,=0, 0, =1

V4

Z~ (0,1)
The PDF of the standard normal distribution is:

(zmpy)
2022

| 1 EY
o,N2rx - 1-\27

The CDF of the standard normal distribution is:

f2(2)=9(2)=

- e

z : )’ z
F,(z2)=®(z) = I f7(2)dz = ! j e 2 dz= ! I e 2 dz=

1
o, 27, 1-\27 - 2z

: oo | %2
1—(D(z):1—:[ofz(z)dz :-!.fz(z)dz:ﬁ-[e 2 dz
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3. The relation between normal and standard normal distributions
Here is an interpretation of the link between the normal distribution and the standard normal
distribution. If X is normally distributed, then for a specific value x, we can definez_ , a specific

value of the random variable Z which is standard normal distributed.

— xco _luX
co
O-X

The PDF of X can be defined, using the PDF of Z :

(X, —tix ) 2
1 e _ 1 1 =51

fx(xco):O_X\/g'e :Zm g'(o(zco)

fo(i) =0z,
O

X

The CDF of X can be defined, using the CDF of Z :

1X/1X2

Fos)= | £0d I
x (X __wa X = O—Xﬁ X =

Changing the domain of integration :
T
Ox
dx _d(py +oyz) =0, = dx=0,dz
dz dz

—00 —
GX

X, —
x=x, = z=toHx =z,

Fy(x,)=2(z,)
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4. Signal distribution

Here are definitions of distribution, PDF and CDF of X which represents the value of targets

the observer need to detect.

X~ (,USaJsz)

*(X*/‘s )2

1 207

—(x—ps )2
2

FS(x)=;[ofS(x)dx=0S\l/EJ;e 207 g

1 © —(x—ug )2

1- F,(x) =1—jw fo(x)dx =I fo(x)dx = - «/27{8 205 gy

When a cutoff point x_, is set, we can define the probabilities of miss and hit:

P]\/[iss('xca) = Eg(xco) 5 PHit(‘xL’o) ZI_ES‘(XCO)

5. Noise distribution

Here are definitions of distribution, PDF and CDF of X, which represents the value of noises.
Xy~ (,uN > 61\/2)

—(x—py )
2

1
fN(x)_ O_Nm'

20y

~(x—pty )’

F(x)= L £o(x)dx = Gsz_ﬂ _Le 207 gy

o —(x—py )2

1-F,(x) =1—j® £ (x)dx =I fio(x)dx =UN;\/% j e 2 dx

When a cutoff point x_ is set, we can define the probabilities of correct rejection and false alarm:

PCR('xca) = FN(xco) ’ PFA('xca) ZI_FN(xw)
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APPENDIX B - EXPRESSION OF Z. AS A FUNCTION OF BETA AND D’ (BECHAR, 2006)

As developed by Bechar (2006). Normalizing the signal and noise distributions is beneficially
in generalizing the problem rather than using the actual units that fit only to a specific case. The

cutoff point, x,, gets different interpretation in each normalized distribution. The cutoff points,
denote as zg and z,, for the signal and the noise distributions, respectively, can be expressed by the
likelihood ratio, B, between the signal and noise density functions in the cutoff point, x_ , and the
distance between the means of the signal and noise distributions, d' (see chapter 2.6 for details).

For the expressions, the standard deviations o, o, were assumed to be equal one (Bechar, 2006).

x —
ZS - < ILIS = xw—luS
Oy
x J—
ZN - < IUN - xco_luN
Oy
d'=ps—py=(x,~2Zs)=(x,,—Zy)=X,~Zs—X,+Zy =2\, - Z;
1 —Zs

.e ’ V 2 2
_f7(Zs) _ 2w 3 6—275+27“ _ e—%(zs )
fz (ZN) L,e_?

N

In(f) = —%(zsz -7,

B

i) d'=2Z,~Z,

i) In(f) =~ (2~ 2,%)

)= iil) Z,=Z, —d'
12
i +iii) = In(B) = —%((ZN -dYV'-Z)= —%(ZNQ -2Zd'+d"-72)=27,d '—d?

12

zNar'zln(ﬁ)+a’7

_Inp)_d'
d' 2

ZN

N=iv) Z, =Zs+d’

12
i +iv) = In(f) = —%(ZSZ —(Z,+d)) = —%(ZSZ ~Z2-2Zd'-d")= ZSd'+d7
12
Zd'=tn(p) -
Z - In(f) d'
d' 2
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APPENDIX C - VALIDATION OF MEAN DISTANCE EQUATIONS

The development of the mean distances equations is presented in chapter 4.1. This appendix

validates them. The equations for mean distance of negative and positive responses are:

_ 3 o(z,)
d = (x,—u)+o —d)(zw)
e ~o(z,)
d =—-(x,—p)+o —l—d)(zm)

For a standard normal distribution with a mean of zero and a standard deviation of one, the

mean distances received from the equations for variable values of the cutoff point, x,, were plotted
(solid line in Figure A1).

In addition, 1000 random numbers from the same distribution were used to calculate the mean
distance of all positive responses (i.e., objects that are higher from the cutoff point) for each value
of the cutoff point. Similarly, the mean distance of all negative responses was calculated (i.e.,
objects that are lower from the cutoff point). The experiment was repeated 30 times and the mean
results between all experiments were plotted (x marks in Figure Al). One can see in Figure Al that
the mean distances gotten from the experiment are exactly the means calculated using the equations.

These results validate the equations.

Formulated and measured distances

35

formulated
= measured

Mean of Hits ¢ Mean of Misses

mean distance from cutoff point

U | | | 1 |
-3 -2 -1 0 1 2 3
cutoff point

Figure Al: A validation of equation for mean distances
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APPENDIX D - DEVELOPMENT OF MEAN REACTION TIME

The development of mean reaction time is based on Murdock (1985). Different denotations

for the parameters of the exponential function (4, B) and for the cutoff point (x

co

) is the only

difference from Murdock’s model. An exponential function is used in order to transfer the strength
of an object into the reaction time of the observer. Strength of an object is its distance from the

cutoff point.

For negative responses, the distance and the reaction time functions are:

dx)=x,—x

t(x)=A-e "
For positive responses the distance and the reaction time functions are:

d(x)=x-x,

((x) = A-e7P0)

Mean reaction times of negative and positive responses depend on the cutoff point and are

denoted respectively as 7T (x,,), T,(x,).
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1 Mean reaction time of negative responses

In order to find the mean reaction time of negative responses, one must calculate weighted
average of all reaction times (results from x-values) of objects with a value lower than the cutoff

point. The weights are the frequencies of x.
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2. Mean reaction time of positive responses

In order to find the mean reaction time of positive responses, one must calculate weighted
average of all reaction times (results from x-values) of objects with a value higher than the cutoff

point. The weights are the frequencies of x.
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APPENDIX E - NUMERICAL ANALYSIS - ADDITIONAL RESULTS

In the following part, the optimal cutoff point of the human in the H collaboration level is
analyzed for each of the three types of systems. The graphs in this part exhibit the cutoff point
against the human sensitivity (d'») and the cost of time unit (v7'2vH ), for each value of the time

parameter ( A ). The analysis was conducted for B=0.5, dr=0.5.

Figure A2 - Figure A4 show the graphs for systems of type I - III, respectively. Each figure
shows graphs for different probabilities of object to be target (Ps=0.7, 0.2, 0.5, 0.8, 0.9)

1. Type I analysis
Type I systems give high priority for not causing false alarms. Figure A2 shows the optimal
cutoff point (z-axis) of the human for different probabilities of targets ( Ps). When Ps is 0.1

(Figure A2-a), an extreme positive cutoff point is preferred for relatively high sensitivities

(d'n=1.5). As Ps increases to 0.5 (Figure A2-c), i.e., half of the objects are targets, the system
prefers an extreme cutoff point only for lower sensitivities (d'»=0.5). As Ps increases further to

0.8, 0.9 (Figure A2-d,e), i.e., most of the objects are targets, the system does not prefer an extreme

cutoff point.

2. Type II analysis
Type II systems give high priority for not missing targets. Figure A3 shows the optimal cutoff
point (z-axis) of the human for different probabilities of targets ( Ps). When Ps is high, 0.9 (Figure

A3-e), an extreme negative cutoff point is preferred for relatively high sensitivities (d'»=2.5).

As Ps decreases to 0.5 (Figure A3-c), the system prefers an extreme cutoff point only for lower
sensitivities (d'»=1). As Ps decreases further to 0.2, 0.1 (Figure A3-b,a), i.e., most of the objects

are not targets, the system prefers an extreme positive cutoff point for low sensitivities (d'» = 1).

3. Type III analysis
Type III systems do not prefer one type of error on the other. Figure A4 shows the optimal
cutoff point (z-axis) of the human for different probabilities of targets (Ps). When Ps is 0.5,

(Figure A4-c), the optimal cutoff point value is approximately half of the human sensitivity, which
represents the distance between the means of the distributions (i.e., the cutoff point is between the

means of the distributions). When Ps decreases to 0.2, 0.1 (Figure A4-a,b), the system prefers an
extreme positive cutoff point for low sensitivities (d'»~0.5—1.5). When Ps increases to 0.8, 0.9

(Figure A4-d,e), the system prefers an extreme negative cutoff point for low sensitivities

(d'v=~0.5-1).
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Figure A2: The optimal cutoff point of the human (z-axis) in the H collaboration level in a Type I system.
(@) Ps=0.1,(b) Ps=0.2,(c) Ps=0.5,(d) Ps=0.8,(e) Ps=0.9. B=0.5,dr=0.5.
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Figure A3: The optimal cutoff point of the human (z-axis) in the H collaboration level in a Type II system.
(@) Ps=0.1,(b) Ps=0.2,(c) Ps=0.5,(d) Ps=0.8,(e) Ps=0.9. B=0.5,dr=0.5.
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Figure A4: The optimal cutoff point of the human (z-axis) in the H collaboration level in a Type III system.
(@) Ps=0.1,(b) Ps=0.2,(c) Ps=0.5,(d) Ps=0.8,(e) Ps=0.9. B=0.5,dr=0.5.
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4. Time influence on the optimal cutoff point position

An extreme cutoff point position decreases the total operation time cost. The mean reaction
time reduces as the cutoff point is far from the mean of the distribution; therefore, in the sense of

time costs, extreme cutoff point is always preferred.

In all the graphs (Figure A2 - Figure A4), the cutoff point varies with the change of the time
cost (vT'2vH ) along X-axis. When the time cost is high, an extreme cutoff point is preferred for
higher human sensitivities. For example, see the left graph in Figure A4-a. When the time cost is
high (vT'2vH =—-0.03), an extreme cutoff point (z value is 6) is preferred for human sensitivities
that are less than two (d'x<=2). However, when the time cost is low (v72vH =—0.01), an

extreme cutoff point (6) is preferred only for human sensitivities that are less than one (d'»<=1).

Parameter 4 is coordinated with mean reaction time of the human (i.e., high mean reaction
time is expected when 4 holds high values) and has the same influence. Parameter A equals two on
the left graphs and increases to ten on the right graphs. An extreme cutoff point is preferred for
higher human sensitivities as parameter A increases. For example, see Figure A4-a. In the left graph
A =2 and an extreme cutoff point (6) is preferred only for human sensitivities that are less than one
(d'n<=1). As parameter 4 increases to 5 or 10 (in the other two graphs), an extreme cutoff point

(6) is preferred also for higher human sensitivities.

To conclude, the analysis shows that parameter 4 and time cost affect the position of the
optimal cutoff point. The phenomenon, of extreme cutoff point position, arises for higher human

sensitivities as parameter A and/or the time cost are higher.
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Abstract

This study aims to evaluate the influence of human’s reaction time on performance of integrated human-
robot target recognition. Particularly, the study presents a model to evaluate the effect of reaction time on
the human-robot collaboration level. The model’s objective function quantifies the influence of robot, human,
environment and task parameters, through a weighted sum of performance measures. Simulation analysis
considered reaction time that depended on the signal strength of the observed object. Results reveal an
extreme threshold selection, in two cases: when human sensitivity reduces, and when the cost of time
increases. An extreme threshold selection decreases the total operational time costs.

Keywords:

Human-robot collaboration, collaboration levels, reaction time, target recognition.

1 INTRODUCTION

Autonomous robots are systems that can perform tasks
without human intervention. They are best suited for
applications that require accuracy and high yield under
stable conditions, yet they lack the capability to respond to
unknown, changing and unpredicted events [1]. Humans,
dissimilarly, can easily fit themselves into changing
unstructured environment and undefined targets [1]. By
taking advantage of the human perception skills and the
robot's accuracy and consistency, the combined human-
robotic system can be simplified, resulting in improved
performance [1].

In human-robot collaborative systems, types of
collaboration levels differ by nature, scale, structure, and
number of levels. Sheridan [2] describes ten levels of
automation of decision and action selection. Bechar and
Edan [3] evaluate two collaboration levels for agriculture
robot guidance through an off-road path. Bruemmer et al.
[4] determine four modes of control of a remote mobile
robot in an in-door search and exploration task. Hughes
and Lewis [5] use two different levels of control on robot’s
cameras in order to control it in a remote environment.
Czarnecki and Graves [6] describe a scale of five human-
robot interaction levels for a telerobotic behavior based
system.

Target recognition is a critical element in most robotic
systems [1] including industrial and service applications,
quality assurance, medical, agriculture and remote sensing
[1]. Automatic target recognition in unstructured outdoor
environments is characterized by low detection rates and
high false alarm rates [7].

Reaction time is the cognitive time required for the
observer to decide whether an object is a target or not.
Accuracy in target recognition measures the ability of the
observer to detect targets correctly. The relation between
reaction time and accuracy varies according to whether
speed or accuracy of performance is emphasized; and
according to whether one response or another is more
probable or weighted more heavily [8]. Murdock [9]
analyses the strength-latency relationship and introduces a
generic reaction time model based on the distance-from-
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criteria of the observed object. He suggests that an
exponential function is the most reasonable to use in order
to transfer the object’s strength, i.e., distance-from-criteria,
into latency. In this research, a reaction time model, based
on Murdock [9], is incorporated into Bechars [1]
collaboration model.

The study aims to evaluate the influence of human’s
reaction time on the performance of an integrated human-
robot system, designated for target recognition tasks.
Particularly, the study focuses on how reaction time affects
the level of human- robot collaboration that results in best
performance.

2 METHODOLOGY
2.1 Collaboration levels

Four collaboration levels for target recognition were
designed based on [1]: i) H - the Human, unaided, detects
and marks the desired target; ii) HR - the Human marks
targets, aided by recommendations from an automatic
detection algorithm, i.e., the targets are automatically
marked by a Robot detection algorithm, the human
acknowledges the robot’s correct detections, ignores false
detections and marks targets missed by the robot; iii) HOR
- the Human Operators' assignment is to cancel false
detections and to mark the targets missed by an automatic
Robot detection algorithm; and iv) R - the targets are
marked automatically by the system (Robot).

2.2 Collaboration model

The collaboration model was based on a model defined in
[1]. An objective function describes the expected value of
system performance, given the properties of the
environment and the system. The goal is to maximize the
objective function. The objective function (Vis, equation 1)
is composed of the four responses of the target detection
process and the system operational costs:

Vis = Vs + Vs + VEas + Vors + Vs

(1)

Where Vg5 is the gain for target detections (hits), Vras is
the penalty for false alarms, Vs is the system penalty for
missing targets, Vcrsis the gain for correct rejections, and
Vs is the system operation cost. All gain, penalty and cost
values have the same units, which enable us to add them



together to a single value, expressed in the objective
function. The gain and penalty functions are:

Vs =N-Ps - Flys -Viy )
Vius =N-Ps - Pys -Viy 3)
Veas =N (1-Ps)-Peas -Via 4)
Vers =N-(1-Ps)-Fers - Ver ®)

Where, N is the number of objects in the observed image
and Ps is the probability of an object becoming a target.
The third parameter in the equations, Pxs, is the system
probability for one of the outcomes: hit, miss, false alarm
or correct rejection (x can be y, m, Fa and cr). The fourth
parameter, Vx, is the system gain or penalty from an
expected outcome.

The system’s probability of a certain outcome is influenced

by the serial structure of the model and is composed of the
robot and the human probabilities:

Pris = Prr - By + (1= P ) - Prn (6)
Pus = Bur - Pun +(1=Pur ) Pun (7)
Pras = Prar - Pramn +(1=Prar ) Pran (8)
Fers = Ferr -Fern +(1-Fere ) Ferm 9)
Where:

Py is the robot probability of a hit, Py is the probability of
confirming a robot hit and Puy is the human probability of
detecting a target that the robot did not detect;

Pur is the robot miss probability, Pun is the human
probability of not confirming a robot hit and Pus is the
human probability of missing a target the robot missed.
Prar is the robot false alarm probability, Pram is the human
probability of not avoiding a robot false alarm and Prap is
the human probability of a false alarm on targets the robot
correctly rejected;

Pcrr is the robot probability of a correct rejection, Pcrm is
the human probability of correcting a robot false alarm and
Pcrn is the human probability of a correct rejection on
targets the robot correctly rejected.

The sum of hit and miss probabilities (of the same type)
and the sum of false alarm and correct rejection
probabilities equals one.

The system’s operation cost is:
Vis =ts Vi +[N-Ps-Pys +N-(1-Ps)-Fras] - Ve (10)
Where, ts is the time required by the system to perform a

task, Vi is the cost of one time unit, and V¢ is the operation
cost of one object recognition (hit or false alarm).

The system time consists of the time it takes the human to
decide whether to confirm or reject robot detections; and
the time it takes the human to decide whether objects not
detected by the robot are targets or not. The robot
operation time of processing the images and performing
hits or false alarms, is also included.

ts =N-Ps-Pyr - Prm -t +
+N-Ps-(1-Py ) Pap - tyn +
+N-Ps Py (1= Pu) - tim +
+N-Ps-(1-Py)-(1=Pyp)-tyn +
+N-(1-Ps) Pear - Pearm - tram +
+N-(1-Ps)-(1-Prar)-Pean - tran +
+N-(1=Ps) Pear (1= Peam ) torm +
+N-(1-Ps)-(1-Pear)-(1—Pean) - tcrn + N -1,

Where:

(11)

turn is the human time required to confirm a robot hit and
tyn is the human time required to hit a target that the robot
did not hit;

tus is the human time lost when a robot hit is missed and
tun is the human time invested when missing a target that
the robot did not hit;

tearn is the human time needed not to avoid a robot false
alarm and tran is the human false alarm time;

tcrm is the human time to correctly reject a robot false
alarm, tcrn is the human correct rejection time, and {; is the
robot operation time.

Explicit operation of the system objective function, Vi,
which is suitable for all collaboration levels, is:

Vis =N-Ps - [Py - P - (Vi + Ve +tygn - Vi) +
+(1=Pyr ) Pan - (Vg +Ve +tun Ve )l +
+N-Ps [Py -(1=Prm ) (Vi + tyen - Ve ) +
+(1=Pyr ) (1=Pup) - (Vg +tin Ve )l +
+N-(1-Ps)-[Prar - Pearn - (VEa +Ve +team - Ve ) +
+(1=Pear)-Pean - (VEa +Ve +tean Vi)l +
+N-(1=Ps)-[Prar -(1-Peam)-(Vor +tcrm - Vi) +
+(1=Prar ) (1= Pran) - (Ver +tern VeI + N -t -V,

For the H collaboration level, the system objective function

will be a degenerate form of the full objective function, and

will not include the robot variables:

Vis =N-Ps [Py (Vi + Vo +typ Vi) +
+(1=Pyp ) (Vi +tun VeI +
+N-(1=Ps)-[Pran-(Vea+Ve +tean Vi) +
+(1=Pran)-(Ver +torn -Vt )]

In the R collaboration level, the system objective function
will be a degenerate form of the full objective function, and
will not include the human variables:

Vis =N-Ps [Py - (Vg +Ve )+ (1-Pyy ) -V ] +
+N-(1-Ps)-[Pear -(VEa +Ve )+ (1= Pear ) -Verl + (14)
+N-t. -V,

2.3 Reaction time model

The development of the model that considers the mean
reaction time is based on Murdock [9]. Different
denotations for the parameters of the exponential function
(A, B) and for the cutoff point (xc), is the only difference
from Murdock’s model. An exponential function is used in
order to transfer the strength of an object (its distance from
the cutoff point) into the reaction time of the observer.

We use the term ‘Positive Response’ to describe objects
that the system marks. A ‘Positive Response’ can be either
a Hit, if the object is a target; or a False Alarm if it is not.
The term ‘Negative Response’ describes objects with a
value lower than the cutoff point value, which the system
does not mark as targets. A ‘Negative response’ can be
either a Miss, if the object is a target; or a Correct
Rejection if it is not. The reaction time function maps the
distance of x from a given cutoff point x¢, into time units
and it is different for positive and negative responses. An
exponential function can describe a symmetrical
descendent of latency on both sides of the yes/no criterion
(Figure 1). The reaction time function is:

t( ) Ae_B'(Xco_X)
X)=
Ae*B(X*Xco)

(12)

(13)

; when x < x, (15)
; otherwise

In order to fit this function to real data, the parameters A
and B must be adjusted. Different parameters values lead



to different reaction time functions. One can define
different values for negative and positive responses.

- Mose, Signal + Noise

Koo

Figure 1 - Reaction time function.

Suppose X is normally distributed with a mean of y and a
variance of ¢°. In order to find the mean reaction time, one
must calculate the weighted average of all reaction times
(results from x-values) of the same response. The weights
are the frequencies of x. The mean reaction time depends
on the cutoff point value and is denoted as T.(Xco), T+(Xco)
for negative and positive responses, respectively.

The mean reaction time equations for negative and
positive responses are:
XCO

| t(x)-f(x)dx j Ae B(Xo=X) £ (x)dx

T (Xg) = == oo == oo =
| f(x)dx | f(x)dx (16)
B7 OJ
_ _ A.efBo‘ZcoJr > .@(ZCO—B‘U)

D(2)
j t(x)-f(x)dx j Ae B o) f(x )dx
Ti(Xeo) = foo P = o s =
| f(x)ax [ f(x)ax
XCO XCD
B-o-zco+52‘02

(17)

1-@(z,,+B-0)

=.=A-e
1-D(zy,)

where

; -(x-u)
f(x)= e 20°
(x) 0\/277

%o — 1 =

z, =20 F . @(z)=—-[e 2 dz
s (2) ﬁjw

The equations that were developed for the normal
distribution are adjusted to the signal and noise
distributions. The means and standard deviations of the
signal and noise distributions are respectively us, os and
Un, on. We used the appropriate equations (for positive or
negative responses) and parameters (mean and standard
deviation of signal or noise distributions) to define
equations for mean reaction time of all four possible
outcomes (miss, hit, correct rejection and false alarm):

B’.o4’
-B-os- S _B.
TM - Ae sZst .Q(ZS B Gs) (18)
D(zg)
B’.04’
B-os- S _ .
T, - sZst 1-®(zs+B-0g) (19)

1-(zg)

&9

2

-0,
-B-oy-zy+ N @(zy-B-o
Tecr = A-e (zy~B-op) g(ZN) n) (20)
B2.g,°?
T 3 A~eB‘O-N-ZN+ ;N .1—¢(ZN+B'GN) (21)
i 1-D(zy)
where
Xco —Hs . Xco ~HN
Zo = L _To° ; zZy = 2 T
S os N o

The reaction time function depends on the value of the
cutoff point xc. In our collaborative system, the robot
observes the objects first followed by the human.
Accordingly, the human decides about two different types
of objects: objects that the robot already marked as
targets; and objects the robot did not mark (Figure 2). The
human uses two different cutoff points, for the two types of
objects. Accordingly, two different reaction time functions
should be implemented. The denotations with the index rh
or h (for instance, Tcrn, Thm etc.), will represent reaction
times for objects the robot marked as targets and for those
it did not, respectively.

In the objective function, each of the human time variables
(denoted as txn or txn) represents a superposition of a
decision time and a motoric time (denoted as ty), in
accordance with the collaboration level. The decision times
in the previous work [1] were considered constant. In this
work, the decision times are replaced with the mean
reaction times introduced above.

When the system operates in the R collaboration level the
robot fulfills the task all by itself and all human time
variables equal zero (there is no human intervening).

In the H collaboration level, the human does not use the
robot’s help and the time variables are:

tvn =T tcrn =Tcrn

thh = ThHn +tu
In the HR collaboration level, the robot recommends the
human by indicating potential targets. Then the human
confirms targets he thinks are real and marks extra targets
the robot did not indicate. The human does a motoric
action (marking) if he thinks the robot recommended well.
The time variables are:

(22)
tran =Tran +tu

tn = Tn trh = T
tn =Thn +ty trim = Thm + 1ty (23)
tcrn =Tcrn tcrh = Term

tran = Tran +ty tram = Tram +tu

In the HOR collaboration level, the human supervises the
robot. The robot marks targets and the human is checking
those marks. The human unmarks targets that are not real
and marks extra targets that the robot missed. In this case,
the human does a motoric action (unmarking) only if he
thinks the robot made a mistake. The time variables are:

tvn = Tun tarh = Taaen + 1t

typ =Ty +1 t =T

Hh = Trn + 1y Hrh = THrh (24)
tcrn =Tcrn term = Term +tu

tean = Tran +tu tearn = Tram

The (motoric) time it takes to physically mark or unmark an
object depends on the system interface and the
environment conditions. It should not vary between
detected objects and therefore will remain considered
constant.
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Figure 2 - Reaction times diagram.

3 NUMERICAL ANALYSIS

A numerical analysis of the model was conducted using
MatLab 7.1 with optimal human and robot cutoff points.
The optimal cutoff points were determined by finding the
cutoff points that yielded the maximal objective function
value. The objective function score was calculated for each
possible combination of parameters and variables, for
each collaboration level.

31 Model parameters
Task types and parameters

Analysis focused on three system types characterized by
the gains and penalties for each outcome (Vy, Vi, VFa, Ver
[10]). Table 1 details the values for each type of system.

Type | gives high priority for not doing errors of the first
type, i.e., detecting a target when a target does not exist
(false alarm).

Type Il gives high priority for not doing errors of the second
type, i.e., missing a target.

Type lll systems do not prefer one type of error and
therefore yield identical values for all four possible
outcomes.

The time cost (V7) is the cost of one time unit of system
operation. It includes the cost of the human operator and
the robot since they are operating simultaneously. In order
to analyze the influence of time cost regardless of the
system type, it was set relatively to the gain for a hit
(Vr=Vu V121). The ratio between the time cost and the gain
for a hit, Vran, was set to the values: -80, -40, -20 (hour'1).

For example, when Vy equals 5 points, Vr obtained the
values: -400, -200, -100 points.

The operational cost (Vc) is the cost of the action
conducted when the system detects a target, either if it is a
hit or a false alarm. This cost was set to 2 points.
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Environmental parameters

The parameters N and Ps determine the environmental
conditions. The objective function was calculated for 1,000
objects (N). The target probability (Ps) represents the
fraction of targets from all objects and received values
between 0.1 and 0.9.

Human parameters

The decision time was calculated using the mean reaction
time function introduced above. Parameter A, of the
function, was set to 2, 5 or 10 seconds and parameter B
was set to 0, 0.5, 1, 1.5 or 2. The human motoric time (fv)
of executing an action was set to 2 seconds.

The sensitivity represents the ability of the observer to
distinguish between real targets and the other objects. The
human'’s sensitivity (d’s) was varied between 0.5 and 3.

Robot parameters

The sensitivity of the robot (d’) was varied between 0.5
and 3. The robot decision time (f;) is negligible relatively to
the other times and was set to 0.01 seconds.

Table 1. Gains and penalties for different types of systems.

Type | Type Il Type 1l
VH 5 50 10
Vi -10 -10 -10
VFa -50 -5 -10
Ver 10 10 10




3.2 Cutoff point analysis

When the sensitivity of the human operator is high, the
human operator can better distinguish between targets.
The optimal cutoff point is a point between the means of
the noise and signal distribution (Figure 3, a). When the
sensitivity is low, the ability to distinguish between targets
reduces and it becomes more effective not to examine the
objects. The optimal cutoff point goes to the extreme and
the human actually does not mark any object as a target
(Figure 3, b). When the system gives high priority to “not
doing false alarms” (Type ), the cutoff point will be set to
infinity. When there is high priority of not missing a target
(Type II), the cutoff point will be set to minus infinity, and
all of the objects will be marked as targets.

(a)

I

fix)

Moise. /Signal +MNoise

(®)

T -

P

Figure 3 - A cutoff point between the distributions’ means
when the sensitivity is high (a) and extreme cutoff point
selection when sensitivity is low (b).

This influence finds expression in the analysis, regardless
of the response time costs of the observer. The time costs
amplify this phenomenon. The mean response time
reduces as the cutoff point is far from the mean of the
distribution; therefore, in the sense of time costs, an
extreme cutoff point is always preferred. The ‘extremes’ in
this data set are -3 and 6.

The position of the cutoff point influences all other parts of
the objective function. An extreme positive cutoff point, for
example, causes small probabilities of false alarms and
hits; and causes high probabilities of miss and correct
rejections. The overall gains and penalties of these
outcomes are modified accordingly.

(b)
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Human optimal cutoff point influence in Type | systems

Type | systems give high priority for avoiding false alarms.
When the human has low sensitivity, it is expected to get
the highest value possible for the optimal cutoff point.
Figure 4 (a) shows the optimal cutoff point of the human
(z-axis). When the sensitivity of the human is low, the
optimal cutoff point value is six (the highest value
possible).

As the cutoff point is drawn away from the means of the
distribution (see Figure 3, b), the distance of the objects
from the cutoff point increases; and the mean response
time, correspondingly, decreases. Figure 4 (b) shows
decrease in system operation time for low human
sensitivity.

Furthermore, the analysis shows that the total penalty for
false alarms grows as the sensitivity of the observer
decreases (Figure 4, c). This phenomenon exists up to the
point where the sensitivity is too small. Then, an extreme
cutoff point is preferred and the human marks less objects
as targets. Therefore, the total penalty for false alarms
decreases as was expected in Type [ systems.

Human optimal cutoff point influence in Type Il systems

Type Il systems give high priority for not missing targets.
Analysis shows that when human has low sensitivity, the
optimal cutoff point value -3 (the lowest value possible).

As was explained for Type I, extreme cutoff point results in
redundancy of system operation time. The total penalty for
misses behaves the same as the total penalty for false
alarms in Type I.

Human optimal cutoff point influence in Type Il systems

In Type Il systems, the gains and penalties are equal for
all outcomes, there is no preferable error and the cutoff
point remains between the means of the distributions even
when the sensitivity of the observer is low.

The total penalty for misses and the total penalty for false
alarms continue to decrease also for low sensitivities.

3.3 Human’s dominancy analysis

The human operations cause an increase in operation time
and costs. The human response time and motoric time are
significantly higher than the robot decision time. Therefore,
in the sense of time costs, it is reasonable that involving a
human in the recognition process will be less profitable
when the time cost is high.

In Figure 5, a single collaboration level dominates each
zone and the sensitivities of the human and the robot are
ranged along x and y axes. The graphs present the
collaboration level required to achieve the best system
performance.

VEas

-0.02
vT2vH

Figure 4 - Optimal cutoff point of the human (a), system operation time (b) and System total penalty for false alarms (c) in the
H collaboration level, Type I system. Human sensitivity and the time cost are ranged along x and y axes.
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Figure 5 - Human dominance reduces as the time cost increases.
Each color represents different operating level: HR- dark grey, HOR- light grey and R- black

One can see that human dominance reduces as the time
cost increases. The time cost increases from the right
graph (Vr2Vy=-0.0055) to the left graph (Vr2V4=-0.0222).
Accordingly, the area of the HR and HOR collaboration
levels diminished. Human dominance also reduces as
parameter A increases and/or parameter B decreases
(Equation 15).

3.4  Object probability analysis

The probability of an object to be a target (Ps) influences
the phenomenon of the extreme cutoff point selection. In
Type Il systems when there are many targets among the
objects (i.e., Ps is high), the system prefers extreme cutoff
point for higher sensitivities of the human (relatively to low
sensitivities in cases where Ps is not high and an extreme
cutoff point is preferred). In a similar manner, when most of
the objects are not targets (i.e., Ps is low), in Type [
systems, an extreme cutoff point is preferred for higher
human sensitivities.

4 CONCLUSIONS

The numerical analysis reveals a phenomenon of extreme
optimal cutoff point position for the human, when the
sensitivity of the human is low. An extreme cutoff point
position decreases the total operation time cost. Therefore,
an extreme cutoff point is always preferred when time
costs are a priority.

Both mean reaction time and time cost affect the position
of the optimal cutoff point. This arises for higher human
sensitivities as the mean time and/or the time cost are
higher. Furthermore, the analysis shows that collaboration
with a human is less profitable when the mean reaction
time and/or the time cost are high.

The probability of an object to be a target (Ps) influences
the extreme cutoff point selection. A reasonable
explanation for this influence is the potential of misses or
false alarms to occur. When there are many targets, the
potential of miss is higher; and when there are few targets,
the potential of false alarm is high. Therefore, when the
system tries to avoid false alarms, it “gives up” on trying to
detect targets when most of the objects are not targets.
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APPENDIX G - THE NUMERIC SIMULATION SOFTWARE

1. The experiment program code

[

3 This program sets the parameter's values and runs an experiment

clear all;
clc;

% Create directories fot the experiment data
exName="Typel';% Experiment name
DataPath=['D:\Data\', exName, '\'];

if isdir (DataPath)

message=['Directory ', DataPath, ' already exist. Either delete it or change experiment
name.'];

warning (message)

break

end

mkdir (DataPath) ;

mkdir (DataPath, 'Parameters');
mkdir (DataPath, 'Optimal');
mkdir (DataPath, 'Graphs');

o
s
o
s

Parameters values

o°

N=1000; % # of objects

vH=5; % The gain from Hit

vM=-10; % The panelty for Miss
vFA=-10*vH; % The panelty for False Alarm
vCR=-1*vM; % The gain from Correct Rejection

o°

vT2vH_vector=[—80,—40,—20]./3600; The cost of one time unit

vC=-2; % Cost of one object recognition operation
tr=0.01; % The robot time. sec/object on average
tMotor=2; % The motoric time of the human

o

Ps vector=[0.1,0.2,0.5,0.8,0.9]; Probability for object to be target

oo

dh_vector=[
dr_vector=|

]
]

0.5:0.5:3 The sensitivity of the human
0.5:0.5:3 The sensitivity of the robot

’
’

oo

oo

XcoRange=[-3:0.1:6]; % All the posible cutoff points

\o

global A; > A and B are parameters of the reaction time function
global B;

A vector=[2,5,10];

B _vector=[0,0.5,1,1.5,2];

%Save the parameters for the Graphs programs
eval (['save ' DataPath 'Parameters\Parameters.mat'])

% Run the experiment
OptimalBetas
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2. The data base creator code

% This program create a data set of all possible combination of the parameters.
% Then, it extracts only the records of the optimal objective function value.

tic

% All possible cutoff points for the robot (r) and the human (h, rh), Based on their
sensitivities
for i=1:sXco
Zn_r(:,:,1)=XcoRange (i) ;
Zn _h(:,1,:)=XcoRange (i) ;
Zn_rh(i,:, :)=XcoRange (i)
end

o

o

Loops 1 to 6 spread all combinations of parameters' values

o°

% Loop 1 : vT/vH aspect ratio
for 1vT2vH = l:length (vT2vH_vector)
vT=vH.*vT2vH vector (ivT2vH);

o

% Loop 2 : B parameter of the mean time function
for iB=1:length (B_vector)
B=B_vector (iB);

% Loop 3: A parameter of the mean time function
for iA=l:1length (A vector)

A=A vector (iA);

% Loop 4 : Probability for object to be target
for iPs=1:length(Ps_vector)

Ps=Ps_vector (iPs);

% Loop 5 : The range of d' for the human operator sensitivity
for idh=1:length(dh vector)
dh=dh vector (idh);

% Loop 6 : The range of d' for the robot sensitivity
for idr=1:length(dr_vector)
dr=dr_vector (idr);

% START - For each combination of parameters - create data set of all possible cutoff points

% All possible cutoff points for the robot(r) and the human (h,rh). Based on their sensitivities

oo

o°

Zs_r=Zn_r-dr;
Zs_h=Zn_h-dh;
Zs_rh=Zn_rh-dh;

Robot's cutoff point for a signal
Human's cutoff point for a signal
Human's cutoff point for a signal, when collaborate with the robot

o°

o

% The probabilities for the robot (r) and the human (h, rh). Based on the cutoff points

pH_r=l-normcdf (Zs_r); % Robot's probability for a hit

pFA r=l1-normcdf (Zn_r); % Robot's probability for a false alarm

pH h=l-normcdf (Zs _h); % Human's probability for a hit

pPFA h=l1-normcdf (Zn_h); % Human's probability for a false alarm

pH_rh=1-normcdf (Zs_rh) ; % Human's probability for a hit, when collaborate with the robot
pFA rh=1-normcdf (Zn_rh) ; % Human's probability for a FA, when collaborate with the robot

% The mean response time of the human for objects the robot did not mark

tM_h=meanTime (Zs_h, '
tFA h=meanTime (Zn_h,
tCR_h=meanTime (Zn_h, "'

tH_h=meanTime (Zs_h, 'p'
n
Al
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% The mean response time of the human for objects the robot did mark

tH rh=meanTime (Zs_ rh, p )
tM_rh=meanTime (Zs_rh, ')

tFA rh=meanTime (Zn_rh, p'),
tCR rh=meanTime (Zn_rh, 'n')

7

[

3H collaboration level - human alone
% Probabilities, gains and penalties
pHs_H=pH h;

VHs_H=N.*Ps.*pHs H.*VH;
pMs_H=1-pHs_H;

vMs H = N.*Ps.*pMs H.*vM;
pFAs_H=pFA h;

vFAs H=N.* (1-Ps).*pFAs H.*VFA;
pCRs_H = 1-pFAs H;

vCRs_H = N.*(1-Ps) .*pCRs_H.*VvCR;

o

Probability for a hit

Gain from a hit

Probability for a miss

Penalty from a miss

Probability for a false alarm
Penalty from a false alarm
Probability for a correct rejection
Gain from a correct rejection

o° o d° o° o o

o

% Operational costs
ts_H= N.*Ps.*pH_h.* (tH_h+tMotor) ...
+N.* (1-Ps) . *pFA h.* (tFA h+tMotor) ...
+N.*Ps.* (1-pH h).*tM h...
+N.* (1-Ps) .* (1-pFA_h) . *tCR_h;
vTs_H=ts H.*VT;
vCs_H=(N.*Ps.*pH h...
+N.* (1-Ps) . *pFA h) .*vC;

o°

The system time

o°

Time costs
Action costs (for detected targets)

o°

o

% The objective function
VIs_ H=vHs_ H+vMs_ H+vFAs H+vCRs_H+vTs_H+vCs_ H;

% HR collaboration level - the robot recommends the human

% Probabilities, gains and penalties
pHs_HR=pH r.*pH rh+(l1-pH r).*pH h;
vHs_HR=N.*Ps.*pHs HR.*VH;

pMs_. "HR=1- pHs_HR;

vMs_ HR=N.*Ps.*pMs HR.*vM;

pFAs HR=pFA r.*pFA rh+(1-pFA r).*pFA h;
vFAs_HR=N.* (1-Ps) .*pFAs_HR.*VFA;
pCRs_HR=1-pFAs HR;

vCRs HR=N.* (1-Ps) .*pCRs_HR.*VvCR;

o°

Probability for a hit

Gain from a hit

Probability for a miss

Penalty from a miss

Probability for a false alarm
Penalty from a false alarm
Probability for a correct rejection
Gain from a correct rejection

o o o o o o

o

o

% Operational costs

ts_HR= N.*Ps.*pH r.*pH rh.* (tH rh+tMotor) ...
+N.*Ps.* (1-pH r).*pH h.* (tH h+tMotor)...
+N.* (1-Ps) . *pFA r.*pFA rh.* (tFA rh+tMotor)...
+N.* (1-Ps) .* (1-pFA_r) .*pFA h.* (tFA h+tMotor)...
+N.*Ps.*pH r.* (1-pH _rh).*tM rh..
+N.*Ps.*(1—pH7r).*(1—pH7h).*tM7h...

+N.* (1-Ps) . *pFA r.* (1-pFA rh) .*tCR rh...

+N.* (1-Ps) .* (1-pFA_r) .*(1-pFA h) .*tCR h...

The system time

o°

+N*tr;
vTs_HR=ts HR.*VT; % Time costs
vCs HR=(N.*Ps.*pH r.*pH rh... % Action costs (for detected targets)

+N.*Ps.* (1-pH_r).*pH _h...
+N.* (1-Ps) . *pFA_r.*pFA rh...
+N.* (1-Ps) .* (1-pFA r) .*pFA h).*vC;

% The objective function

S

VIs_HR=vHs_HR+vMs_HR+vFAs_ HR+vCRs_HR+vTs_HR+vCs_HR;
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%HOR collaboration level - the human supervise the robot

% Probabilities, gains and penalties
% Same as for HR collaboration level
pHs_HOR=pHs HR;

vHs HOR=vHs HR;

pMs_HOR=pMs_ HR;

vMs_ HOR=vMs HR;

pFAs HOR=pFAs HR;

vFAs_HOR=vFAs HR;

pPCRs_ HOR=pCRs HR;

vCRs HOR=vCRs HR;

o

Probability for a hit

Gain from a hit

Probability for a miss

Penalty from a miss

Probability for a false alarm
Penalty from a false alarm
Probability for a correct rejection
Gain from a correct rejection

oC o d° o° o o

o°

)

% Operational costs

ts_HOR= N.*Ps.*pH r.*pH rh.*tH rh...

+N.*Ps.* (1-pH r).*pH h.* (tH h+tMotor)...

+N.* (1-Ps) .*pFA r.*pFA rh.*tFA rh...

+N.*(1-Ps) .* (1-pFA r).*pFA h.* (tFA h+tMotor)...
+N.*Ps.*pH r.* (1-pH rh).* (tM rh+tMotor)...
+N.*Ps.* (1-pH r).* (1-pH_h) .*tM h...

+N.* (1-Ps) .*pFA r.* (1-pFA rh) .* (tCR_rh+tMotor) ...
+N.* (1-Ps) .* (1-pFA_r) .* (1-pFA h) .*tCR h...

o°

The system time

+N*tr;
vTs_HOR=ts_ HOR.*VT; % Time costs
vCs_HOR=(N.*Ps.*pH r.*pH rh... % Action costs (for detected targets)

+N.*Ps.* (1-pH _r).*pH h...
+N.* (1-Ps) . *pFA_r.*pFA rh...
+N.* (1-Ps) .* (1-pFA_r) .*pFA h).*vC;
% The objective function
VIs_ HOR=vHs_HOR+vMs_ HOR+vFAs_HOR+vCRs_HOR+vTs_ HOR+vCs_HOR;

o

%R collaboration level - fully autonomous robot

o

% Probabilities, gains and penalties
pHs_R=pH r;

vHs_R=N.*Ps.*pHs R.*VH;

pMs R=1-pHs R;

vMs R = N.*Ps.*pMs R.*vM;
pFAs_R=pFA_r;

VFAs R=N.* (1-Ps).*pFAs_R.*VFA;
pCRs R = 1-pFAs R;

vCRs R = N.*(1-Ps) .*pCRs_R.*VvCR;

o°

Probability for a hit

Gain from a hit

Probability for a miss

Penalty from a miss

Probability for a false alarm
Penalty from a false alarm
Probability for a correct rejection
Gain from a correct rejection

o o o o o o

o

o

% Operational costs

ts R=N*tr*ones (sXco, sXco, sXco) ;

vTs R=ts R.*VT;
vCs_R=(N.*Ps.*pH r+N.* (1-Ps).*pFA r).*vC;

o

The system time
Time costs
Action costs (for detected targets)

o

o°

o

% The objective function
VIs R=vHs R+vMs R+vFAs R+vCRs R+vTs R+vCs R;
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o

oe

This part extracts the records of the optimal system objective function
from the data. For each collaboration level, the maximum value of

the objective function is found, and the indices of the cutoff points are
used to extract the value of the other functions.

o o o°

oe

%H collaboration level - human alone

> Find index of optimal Betas

opt VIs H(idr,idh,iPs,iB,iA,ivT2vH)=max (VIs H(:));

[x yz]=find(VIs_H==opt VIs H(idr,idh,iPs,1iB,iA,ivT2vH));

iXrh H(idr,idh,iPs,iB,iA, ivT2vH)=x(1);
ithH(idr,idh,iPs,iB,iA,ivT2vH)=yz(1)—length(VIsiH)*(ceil(yz(l)./length(VIsiH))—l);
iXr H(idr,idh,iPs, iB, iA, ivT2vH)=ceil (yz (1) ./length (VIs H));

irh H=iXrh H(idr,idh,iPs,iB,1A,ivT2VvH);

ih H=iXh H(idr,idh,iPs,iB, iA,ivT2VH) ;

ir H=iXr H(idr,idh,iPs,iB,iA,1ivT2VH);

% Create the optimal data metrix based on optimal Betas
opt_pHs_H(idr,idh,iPs,iB,iA,ivT2vH)=pHs_H(irh H,ih H,ir H);
opt_vHs_H(idr,idh,iPs,iB,iA,ivT2vH)=vHs_H(irh H,ih H,ir H);
opt pMs H(idr,idh,iPs,iB,iA,ivT2vH)=pMs H(irh H,ih H,ir H);
opt vMs H(idr,idh,iPs,iB,iA,ivT2vH)=vMs H(irh H,ih H,ir H);
opt pFAs H(idr,idh,iPs,iB,1A,ivT2vH)=pFAs H(irh H,ih H,ir H);
opt vFAs H(idr,idh,iPs,iB,1A,ivT2vH)=vFAs H(irh H,ih H,ir H);
opt pCRs_H(idr,idh,iPs,iB,1A,ivT2vH)=pCRs_H(irh H,ih H,ir H);
opt vCRs_H(idr,idh,iPs,iB,1A,ivT2vH)=vCRs_H(irh H,ih H,ir H);
opt_ts_H(idr,idh,iPs,iB, iA,ivT2vH)=ts H(irh H,ih H,ir H);
opt_vTs_H(idr,idh,iPs,iB,1A,ivT2vH)=vTs_H(irh H,ih H,ir H);
opt vCs_H(idr,idh,iPs,iB,iA,ivT2vH)=vCs_H(irh H,ih H,ir H);
opt tH h H(idr,idh,iPs,iB,1A,ivT2vH)=tH h(irh H,ih H,ir H);
opt tM h H(idr,idh,iPs,iB,1A,ivT2vH)=tM h(irh H,ih H,ir H)
opt tFA h H(idr,idh,iPs,iB,iA,ivT2vH)=tFA h(irh H,ih H,ir H);
opt tCR h H(idr,idh,1iPs,iB,1iA,ivT2vH)=tCR _h(irh H,ih H,ir H);

’

$HR collaboration level - the robot recommends the human

% Find index of optimal Betas
opt VIs HR(idr,idh,iPs,iB,1A,ivT2vH)=max ((VIs_HR(:)));
[x yz]=find(VIs HR==opt VIs HR(idr,idh,iPs,iB,iA,ivT2VH));
iXrh HR(idr,idh,iPs,iB,iA, ivT2vH)=x(1);
iXh_HR(idr,idh,iPs,iB,iA,ivT2vH)=yz(1)—length(VIs_HR)*(ceil(yz(l)./length(VIs_HR))—l);
iXr HR(idr,idh,iPs, iB, iA, ivT2vH)=ceil (yz (1) ./length (VIs HR));
irh HR=iXrh HR(idr,idh,iPs,iB,iA, ivT2vH) ;
ih HR=iXh HR(idr,idh,iPs,iB,1iA,ivT2vH);
ir HR=iXr HR(idr,idh,iPs,iB,1A,ivT2VvH);

% Create the optimal data metrix based on optimal Betas
opt pHs HR(idr,idh,iPs,iB,iA,ivT2vH)=pHs HR(irh HR,ih HR,ir HR);
opt vHs HR(idr,idh,iPs,iB, 1A, ivT2vH)=vHs HR(irh HR,ih HR,ir HR);
opt pMs HR(idr,idh,iPs,iB,1A,ivT2vH)=pMs HR (irh HR,ih HR,ir HR)
opt vMs HR(idr,idh,iPs,iB, 1A, ivT2vH)=vMs_ HR(irh HR,ih HR,ir HR);
opt pFAs HR(idr,idh,iPs,iB,iA, ivT2vH)=pFAs HR(irh HR,ih HR,ir HR);
opt vFAs HR(idr,idh,iPs,iB,iA, ivT2vH)=vFAs HR(irh HR,ih HR,ir HR);
)
)

’

opt pCRs_HR(idr,idh,iPs,iB,iA, ivT2vH)=pCRs HR(irh HR,ih HR,ir HR);
opt vCRs_HR(idr,idh,iPs, iB,iA, ivT2vH)=vCRs HR(irh HR,ih HR,ir HR
opt ts HR(idr,idh,iPs,iB,1iA,ivT2vH)=ts HR(irh HR,ih HR,ir HR);
opt vTs HR(idr,idh,iPs,iB,iA,ivT2vH)=vTs HR(irh HR,ih HR,ir HR);
opt vCs_HR(idr,idh,iPs,iB,1A,ivT2vH)=vCs_HR(irh HR,ih HR,ir HR)
opt tH h HR(idr,idh,iPs,iB,1iA,ivT2vH)=tH h(irh HR,ih HR,ir HR);
opt tM h HR(idr,idh,iPs,iB,iA,ivT2vH)=tM h(irh HR,ih HR,ir HR);
opt tFA h HR(idr,idh,iPs,iB,iA,ivT2vH)=tFA h(irh HR,ih HR,ir HR);
opt tCR h HR(idr,idh,iPs,iB,iA,ivT2vH)=tCR h(irh HR,ih HR,ir HR);
opt tH rh HR(idr,idh,iPs,iB,iA,ivT2vH)=tH rh(irh HR,ih HR,ir HR)
opt tM rh HR(idr,idh,iPs,iB,iA,ivT2vH)=tM rh(irh HR,ih HR,ir HR);
opt_ tFA rh HR(idr,idh,iPs,iB,iA,ivT2vH)=tFA rh(irh_ HR,ih HR,ir HR);
opt tCR rh HR(idr,idh,iPs,iB,iA,ivT2vH)=tCR rh(irh HR,ih HR,ir HR);

’

’

’
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$HOR collaboration level - the human supervise the robot

% Find index of optimal Betas

opt VIs HOR(idr,idh,iPs, iB,iA, ivT2vH)=max (VIs_HOR(:));

[x yz]=find (VIs_HOR==opt VIs HOR(idr,idh,iPs,iB,iA, ivT2vH)) ;

iXrh HOR(idr,idh,iPs,iB,iA,ivT2vH)=x(1);

iXh HOR(idr,idh,iPs,iB,iA, ivT2vH)=..

vz (1) -length (VIs HOR) * (ceil (yz (1) ./length (VIs HOR))-1);

iXr HOR(idr,idh, iPs, iB, iA, ivT2vH)=ceil (yz (1) ./length (VIs HOR));

irh HOR=iXrh HOR(idr,idh,iPs,iB, iA,ivT2vVH) ;

ih HOR=iXh HOR(idr,idh,iPs,iB,iA, ivT2vH) ;

ir HOR=1iXr HOR(idr,idh,iPs,iB,iA,ivT2vH);

% Create the optimal data metrix based on optimal Betas

opt_pHs HOR (idr,idh,iPs,iB, iA,ivT2vH)=pHs HOR(irh HOR,ih HOR,ir HOR) ;
opt vHs HOR(idr,idh,iPs,iB, iA, ivT2vH)=vHs HOR (irh HOR,ih HOR,ir HOR);
opt pMs_ HOR(idr,idh,iPs, iB,iA, ivT2vH)=pMs_ HOR(irh HOR,ih HOR,ir HOR);
opt vMs_ HOR(idr,idh,iPs, iB,iA, ivT2vH)=vMs HOR(irh HOR,ih HOR,ir HOR);
opt pFAs HOR(idr,idh,iPs, iB,iA, ivT2vH)=pFAs HOR(irh HOR,ih HOR,ir HOR) ;
opt_vFAs HOR(idr,idh, iPs, iB, iA, ivT2vH)=vFAs HOR (irh HOR,ih HOR,ir_ HOR) ;
opt pCRs_HOR(idr,idh,iPs,iB,iA, ivT2vH)=pCRs_ HOR (irh HOR, ih HOR, ir HOR) ;
opt vCRs_HOR(idr,idh,iPs,iB,iA, ivT2vH)=vCRs HOR (irh HOR, ih HOR, ir HOR) ;
opt_ts HOR(idr,idh,iPs,iB,iA,ivT2vH)=ts HOR(irh HOR,ih HOR,ir HOR);
opt_vTs HOR(idr,idh,iPs,iB,iA,ivT2vH)=vTs HOR(irh HOR,ih HOR,ir HOR) ;
opt vCs_HOR(idr,idh,iPs, iB,iA, ivT2vH)=vCs HOR(irh HOR,ih HOR,ir HOR);
opt tH h HOR(idr,idh,iPs,iB,iA,ivT2vH)=tH h(irh HOR,ih HOR,ir HOR);
opt_tM h HOR(idr,idh, iPs, iB, iA, ivT2vH)=tM h(irh HOR,ih HOR,ir HOR);
opt tFA h HOR(idr,idh,iPs,iB,iA,ivT2vH)=tFA h(irh HOR,ih HOR,ir HOR);
opt tCR _h HOR(idr,idh,iPs,iB,iA,ivT2vH)=tCR h(irh HOR,ih HOR,ir HOR);
opt tH rh HOR(idr,idh,iPs,iB,iA,ivT2vH)=tH rh(irh HOR,ih HOR,ir HOR);
opt tM rh HOR(idr,idh,iPs,iB,iA,ivT2vH)=tM rh(irh HOR,ih HOR,ir HOR);
opt tFA rh HOR(idr,idh,iPs,iB,iA, ivT2vH)=tFA rh(irh HOR,ih HOR,ir_ HOR) ;
opt tCR rh HOR(idr,idh,iPs,iB, iA,ivT2vH)=tCR rh(irh HOR, ih HOR, ir HOR) ;

%R collaboration level - fully autonomous robot

% Find index of optimal Betas

opt VIs R(idr,idh,iPs,iB,1A,ivT2vH)=max (VIs R(:));

[x yz]=find(VIs_R==opt VIs R(idr,idh,iPs,iB,iA,ivT2vH));

iXrh R(idr,idh,iPs, iB,iA, ivT2vH)=x(1);
iXh_R(idr,idh,iPs,iB,iA,ivT2vH)=yz(1)—length(VIs_R)*(ceil(yz(l)./length(VIs_R))—l);
iXr R(idr,idh,iPs, iB, iA, ivT2vH)=ceil (yz (1) ./length (VIs R));

irh R=iXrh R(idr,idh,iPs,iB,1iA,ivT2vH);

ih R=iXh R(idr,idh,iPs,iB, iA,ivT2VH) ;

ir R=iXr R(idr,idh,iPs,iB,iA,1ivT2VH);

% Create the optimal data metrix based on optimal Betas
opt pHs R(idr,idh,iPs,iB,1A,ivT2vH)=pHs R(irh R,ih R,ir R);
opt_vHs R(idr,idh,iPs,iB,iA,ivT2vH)=vHs R(irh R,ih R,ir R);
= ) .
)

)
) _
opt_pMs R(idr,idh,iPs,iB, 1A, ivT2vH)=pMs R(irh R,ih R,ir R);
opt vMs R(idr,idh,iPs,iB,1A,ivT2vH)=vMs R(irh R,ih R,ir R
opt pFAs R(idr,idh,iPs,iB,iA,ivT2vH)=pFAs R(irh R,ih R,ir R);
opt vFAs R(idr,idh,iPs,iB,1A,ivT2vH)=vFAs R(irh R,ih R,ir R);
opt pCRs_R(idr,idh,iPs,iB,1A,ivT2vH)=pCRs_R(irh R,ih R,ir R)
opt vCRs_R(idr,idh,iPs,iB,1A,ivT2vH)=vCRs_R(irh R,ih R,ir R)
opt ts R(idr,idh,iPs,iB,iA,ivT2vH)=ts R(irh R,ih R,ir R);

opt vTs R(idr,idh,iPs,1iB,1A,ivT2vH)=vTs R(irh R,ih R,ir R);
opt_vCs_R(idr,idh,iPs,iB,iA,ivT2vH)=vCs_R(irh R,ih R,ir R);

’

’

’
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$find Max objective function
all VIs=[opt VIs H(idr,idh,iPs,iB,iA,ivT2vH) ,opt VIs HR(idr,idh,iPs,iB,iA,ivT2vH), ..
opt VIs HOR(idr,idh,iPs,iB,1iA,ivT2vH),opt VIs R(idr,idh,iPs,iB,iA,ivT2vH)];
opt VIs(idr,idh,iPs,1iB, iA,1vT2vH)=max (all VIs);

$find best CL based on Max objective function
CL=find(all VIs==opt VIs(idr,idh,iPs,iB,iA,ivT2VH));
opt CL(idr,idh,iPs,iB,iA,ivT2vH)=CL(1); % 1=H, 2=HR, 3=HOR, 4=R

% Find best Zs, Zn for the optimal CL
all pHs=[opt pHs H(idr,idh,iPs,iB,iA,ivT2vH),opt pHs HR(idr,idh,iPs,iB, iA,ivT2vH), ..
opt pHs HOR(idr,idh,iPs,iB, iA,ivT2VvH),opt pHs R(idr,idh,iPs,iB,1A,ivT2vH)];
all pFAs=[opt pFAs H(idr,idh,iPs,1iB,iA,1ivT2vH),opt pFAs HR(idr,idh,iPs,iB,iA, ivT2vH), ..
opt pFAs HOR(idr,idh,iPs,iB,iA, ivT2vH),opt pFAs R(idr,idh,1iPs,iB, 1A, ivT2vH)];
opt Zss(idr,idh,iPs,iB, iA,ivT2vH)=norminv(all pHs (CL(1)));
opt Zns(idr,idh,iPs,iB, iA,ivT2vH)=norminv (all pFAs(CL(1)));
% find best dTag of the overall system
opt dTags (idr,idh,iPs,iB, 1A, ivT2vH) =..
opt Zns(idr,idh,iPs,iB, iA,ivT2vH)-opt Zss(idr,idh,iPs, 1B, 1A, ivT2vH);
opt 1nBs(idr,idh,iPs,iB, iA,ivT2VH)=..
-0.5.*% (opt_Zss(idr,idh,iPs,iB,iA, ivT2vH) ."2-opt Zns (idr,idh,iPs,iB, 1A, ivT2vH) ."2);

%Calculate the optimal Zn (r h rh)
opt Zn r H(idr,idh,iPs,iB,1A,ivT2vH)=Zn r(irh H,ih H,ir H);
opt Zn h H(idr,idh,iPs,iB,1A,ivT2vH)=Zn h(irh H,ih H,ir H);
opt_Zn_rh H(idr,idh,1iPs,iB,1iA,ivT2vH)=%n_rh(irh H,ih H,ir H);
opt Zn r HR(idr,idh,iPs,iB,iA,ivT2vH)=Zn r(irh HR,ih HR,ir HR);
opt Zn_h HR(idr,idh,iPs,iB,iA, ivT2vH)=Zn h(irh HR,ih HR,ir HR);
opt Zn rh HR(idr,idh,iPs,iB,iA,ivT2vH)=2n rh(irh HR,ih HR,ir HR);
opt Zn r HOR(idr,idh,iPs,iB,1A,ivT2vH)=Zn r (irh HOR,ih HOR,ir HOR);
opt_Zn_h HOR(idr,idh,iPs,iB,iA,ivT2vH)=2%n h(irh HOR,ih HOR,ir HOR);
opt Zn rh HOR(idr,idh,iPs,iB,iA,ivT2vH)=Zn rh(irh HOR,ih HOR,ir HOR);
opt _Zn r R(idr,idh,iPs,iB,1A,ivT2vH)=Zn r(irh R,ih R,ir R);
opt _Zn _h R(idr,idh,iPs,iB,1A,ivT2vH)=Zn h(irh R,ih R,ir R);
opt_Zn_rh R(idr,idh,1iPs,iB,1iA,ivT2vH)=%n_rh(irh R,ih R,ir R);

%Calculate the optimal Zs (r h rh)
opt Zs r H(idr,idh,iPs,iB,iA,ivT2vH)=%s r(irh H,ih H,ir H);
opt_Zs_h H(idr,idh,iPs,iB,1A,ivT2vH)=Zs_h(irh H,ih H,ir H);
opt _Zs_rh H(idr,idh,1iPs,iB,1iA,ivT2vH)=%s_rh(irh H,ih H,ir H);
opt Zs r HR(idr,idh,iPs,iB,iA,ivT2vH)=2s r(irh HR,ih HR,ir HR);
opt Zs_h HR(idr,idh,iPs,iB,iA,ivT2vH)=Zs h(irh HR,ih HR,ir HR);
opt_Zs_rh HR(idr,idh,iPs,iB,iA,ivT2vH)=2s_rh(irh HR,ih HR,ir HR);
opt_Zs_r HOR(idr,idh,iPs,iB,iA,ivT2vH)=2s_r (irh HOR,ih HOR,ir HOR);
opt Zs_h HOR(idr,idh,iPs,iB,iA,ivT2vH)=2Zs h(irh HOR,ih HOR,ir HOR);
opt Zs rh HOR(idr,idh,iPs,iB,iA,ivT2vH)=Zs rh(irh HOR,ih HOR,ir HOR);
opt_Zs_r R(idr,idh,iPs,iB,1A,ivT2vH)=Zs_r(irh R,ih R,ir R);
opt_Zs_h R(idr,idh,1iPs,iB,1A,ivT2vH)=Zs_h(irh R,ih R,ir R);
opt Zs rh R(idr,idh,iPs,iB,iA,ivT2vH)=2s rh(irh R,ih R,ir R);

% END - For each combination of parameters

o°

end
end
end
end
end

loop
loop
loop
loop
loop
loop

o°

o oo oe

RN WS oo

o°

end
eval (['save ', DataPath, 'Optimall\', 'OptimalData.mat']) % Save the optimal data

toc
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3. The graph generator code

The graph generator was developed using the GUI assistant of MatLab. The assistant
automatically created most of the following code. The bolded parts were added to the generated

code.

function varargout = GraphGUI (varargin)

gui_ Singleton = 1;

gui State = struct('gui Name', mfilename,
'gui Singleton', gui Singleton,
'gui OpeningFcn', @GraphGUI OpeningFcn,
'gui OutputFcn', @GraphGUI_OutputFcn,
'gui_LayoutFen', [1 ,
'gui Callback', [1):

if nargin && ischar (varargin{l})

gui State.gui Callback = str2func(varargin{l});

end
if nargout
[varargout{l:nargout}] = gui mainfcn(gui State, varargin{:});
else
gui mainfcn(gui State, varargin{:});
end

global dr dh Ps B A vT2vH;

global exName DataPath GraphType str;

global x str y str z str subG _str Pl _str P2 str P3_str iPl iP2 iP3;
dr=1; dh=2; Ps=3; B=4; A=5; vT2vH=6;

return;

% —--— Executes just before GraphGUI is made visible.

function GraphGUI OpeningFcn (hObject, eventdata, handles, varargin)
% Choose default command line output for GraphGUI

handles.output = hObject;

% Update handles structure

guidata (hObject, handles);

function varargout = GraphGUI OutputFcn (hObject, eventdata, handles)

varargout{l} = handles.output;

% —--—- Executes on selection change in funName.

function funName Callback (hObject, eventdata, handles)

global z_str;

val=get (hObject, 'Value') ;

str=get (hObject, 'String') ;

if ~strcmp(str{val}, '---------—-—-—-———————- ")
z_str=str{val};
Graph CreateFcn(hObject, eventdata, handles);

end

return;

% —--—- Executes during object creation, after setting all properties.

function funName CreateFcn (hObject, eventdata, handles)

if ispc && isequal (get (hObject, 'BackgroundColor'), get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', "'white');

end

% —--—- Executes on selection change in expName.

function expName Callback (hObject, eventdata, handles)

global exName DataPath;

val=get (hObject, 'Value') ;

str=get (hObject, 'String"') ;

exName=str{val};

DataPath=['D:\Data\', exName, '\'];

TypeDetails CreateFcn (hObject, eventdata, handles);

Graph CreateFcn (hObject, eventdata, handles);

return;
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% —--- Executes during object creation, after setting all properties.

function expName CreateFcn (hObject, eventdata, handles)

if ispc && isequal (get (hObject, 'BackgroundColor'), get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');

end

% —--- Executes during object creation, after setting all properties.

function TypeDetails CreateFcn(hObject, eventdata, handles)

global DataPath;

var =['N vH vM vFA vCR vC tr tMotor'];

eval(['load ' DataPath 'Parameters\Parameters.mat ' var])

str={['N=' num2str(N)]; ['vH=' num2str(vH)];['vM=' num2str(vM)];['vFA=' num2str(vFA)];['vCR='
num2str (vCR) ]; ['vC="' num2str(vC)];['tr=' num2str(tr)];['tMotor=' num2str (tMotor)]};

set (handles.TypeDetails, 'String', str);

return;

% —--- Executes on selection change in axisX.

function axisX Callback (hObject, eventdata, handles)

global x_str;

val=get (hObject, 'Value') ;

str=get (hObject, 'String"') ;

x_str=str{vall};

return;

% —--- Executes during object creation, after setting all properties.

function axisX CreateFcn(hObject, eventdata, handles)

if ispc && isequal (get (hObject, 'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');

end

% —--- Executes on selection change in axis y.

function axisY Callback (hObject, eventdata, handles)

global y_str;

val=get (hObject, 'Value') ;

str=get (hObject, 'String"') ;

y_str=str{vall};

return;

% —--- Executes during object creation, after setting all properties.

function axisY CreateFcn(hObject, eventdata, handles)

if ispc && isequal (get (hObject, 'BackgroundColor'), get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');

end

% —--— Executes on selection change in axisPl.
function axisPl Callback (hObject, eventdata, handles)
global P1_str;

val=get (hObject, 'Value') ;

str=get (hObject, 'String"') ;

Pl _str=str{val};

listPl_CreateFcn (hObject, eventdata, handles);
textPl_CreateFcn (hObject, eventdata, handles);
return;

% —--- Executes during object creation, after setting all properties.

function axisPl CreateFcn (hObject, eventdata, handles)

if ispc && isequal (get (hObject, 'BackgroundColor'), get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white");

end

% —--- Executes on selection change in axisP2.
function axisP2 Callback (hObject, eventdata, handles)
global P2_str; -

val=get (hObject, 'Value') ;

str=get (hObject, 'String"') ;

P2_str=str{val};

listP2_CreateFcn (hObject, eventdata, handles);
textP2_CreateFcn (hObject, eventdata, handles);
return;
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% —--—- Executes during object creation, after setting all properties.

function axisP2 CreateFcn (hObject, eventdata, handles)

if ispc && isequal (get (hObject, 'BackgroundColor'), get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white");

end

% —--- Executes on selection change in axisP3.

function axisP3 Callback (hObject, eventdata, handles)

global P3_ str;

val=get (hObject, 'Value') ;

str=get (hObject, 'String') ;

P3_str=str{val};

listP3 CreateFcn (hObject, eventdata, handles);

textP3 CreateFcn (hObject, eventdata, handles);

return;

% —-- Executes during object creation, after setting all properties.

function axisP3 CreateFcn (hObject, eventdata, handles)

if ispc && isequal (get (hObject, 'BackgroundColor'), get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');

end

% —--—- Executes on selection change in axisSubG.

function axisSubG Callback (hObject, eventdata, handles)

global subG_str;

val=get (hObject, 'Value') ;

str=get (hObject, 'String"') ;

subG_str=str{val};

return;

% —--- Executes during object creation, after setting all properties.

function axisSubG CreateFcn (hObject, eventdata, handles)

if ispc && isequal (get (hObject, 'BackgroundColor'), get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');

end

% —--—- Executes on button press in pushbuttonl.

function pushbuttonGraph Callback (hObject, eventdata, handles)

listPl_CreateFcn (hObject, eventdata, handles);

textPl CreateFcn (hObject, eventdata, handles);

listP2_CreateFcn (hObject, eventdata, handles);

textP2_CreateFcn (hObject, eventdata, handles);

listP3 CreateFcn (hObject, eventdata, handles);

textP3_CreateFcn (hObject, eventdata, handles);

Graph CreateFcn(hObject, eventdata, handles);

return;

% —--—- Executes on selection change in 1listPl.

function 1istPl Callback (hObject, eventdata, handles)

global iP1; -

iPl=get (hObject, 'Value') ;

Graph CreateFcn(hObject, eventdata, handles);

return;

% —--—- Executes during object creation, after setting all properties.

function 1istPl CreateFcn(hObject, eventdata, handles)

if ispc && isequal (get (hObject, 'BackgroundColor'), get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', "'white');

end

global DataPath;

var =['dr vector dh_vector Ps_vector B vector A vector VTZVH_vector'];
eval(['load ' DataPath 'Parameters\Parameters.mat ' wvar])
global P1_str;

val=get (handles.axisP1l, 'Value') ;

str=get (handles.axisPl, 'String') ;

Pl_str=str{val};

vPl=eval ([P1_str ' vector']);

list=vP1l;

set (handles.listPl, 'String’', list, 'Value',6 1);

return;
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% —--—- Executes on selection change in listP2.
function 1listP2 Callback (hObject, eventdata, handles)
global iP2;

iP2=get (hObject, 'Value') ;

Graph CreateFcn(hObject, eventdata, handles);

return;

% —--- Executes during object creation, after setting all properties.

function 1listP2 CreateFcn (hObject, eventdata, handles)

if ispc && isequal (get (hObject, 'BackgroundColor'), get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');

end

global DataPath;

var =['dr_vector dh_vector Ps_vector B_vector A vector vT2vH_vector'];
eval(['load ' DataPath 'Parameters\Parameters.mat ' var])

global P2_str;

val=get (handles.axisP2, 'Value') ;

str=get (handles.axisP2, 'String') ;

P2_str=str{val};

vP2=eval ([P2_str ' vector']);

list=vP2;

set (handles.listP2, 'String’', list, 'Value',6 1);
return;

% —--—- Executes on selection change in 1istP3.
function 1istP3 Callback (hObject, eventdata, handles)
global iP3;

iP3=get (hObject, 'Value') ;

Graph CreateFcn(hObject, eventdata, handles);

return;

% —--- Executes during object creation, after setting all properties.

function 1istP3 CreateFcn(hObject, eventdata, handles)

if ispc && isequal (get (hObject, 'BackgroundColor'), get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white");

end

global DataPath;

var =['dr_vector dh_vector Ps_vector B_vector A vector vT2vH vector'];
eval([' load ' DataPath 'Parameters\Parameters.mat ' var])

global P3 str;

val=get (handles.axisP3, 'Value');

str=get (handles.axisP3, 'String');

P3_ str=str{val};

vP3=eval ([P3_str '_vector']);

list=vP3;

set (handles.listP3, 'String', list, 'Value',k6 1);

return;

% —--- Executes during object creation, after setting all properties.

function textPl CreateFcn(hObject, eventdata, handles)
global P1_str;

set (handles. textPl, 'String', Pl_str);

return;

% —--- Executes during object creation, after setting all properties.
function textP2 CreateFcn(hObject, eventdata, handles)

global P2_str;

set (handles. textP2, 'String', P2_str);

return;

% —--- Executes during object creation, after setting all properties.
function textP3 CreateFcn(hObject, eventdata, handles)

global P3 str;

set (handles.textP3, 'String', P3_str);

return;

% —--—- Executes on selection change in GraphType.
function GraphType Callback (hObject, eventdata, handles)
val=get (hObject, 'Value') ;

str=get (hObject, 'String"') ;

GraphType str=str{val};

Graph CreateFcn (hObject, eventdata, handles);

return;
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> —-—- Executes during object creation, after setting all properties.
function Graph CreateFcn(hObject, eventdata, handles)

global dr dh Ps B A vT2vH;

global exName DataPath GraphType str;

global x str y str z str subG str Pl_str P2 str P3 str iPl iP2 iP3;

% Load the matrix for z cordination

eval(['load ' DataPath 'Optimal\OptimalData.mat ' z_str])

% Load parameters values

var =['dr_vector dh_vector Ps_vector B_vector A vector vT2vH vector'];
eval(['load ' DataPath 'Parameters\Parameters.mat ' var])

switch z_str
case 'vI/VI_H'
eval(['load ' DataPath 'Optimal\OptimalData.mat opt vTs H opt VIs H'])
z=opt VvTs_H./opt VIs H;
case 'vT/VI_HR'
eval(['load ' DataPath 'Optimal\OptimalData.mat opt vTs HR opt VIs HR'])
z=opt_vTs_HR./opt VIs_HR;
case 'vT/VI_HOR'
eval(['load ' DataPath 'Optimal\OptimalData.mat opt vTs_HOR opt VIs HOR'])
z=opt_vTs_HOR./opt_VIs HOR;
case 'vI/VI_R'
eval(['load ' DataPath 'Optimal\OptimalData.mat opt vTs R opt VIs R'])
z=opt_VvTs_R./opt VIs_R;
otherwise
% Load the matrix for z cordination
eval(['load ' DataPath 'Optimal\OptimalData.mat ' z_str])
z=eval (z_str) ;
end
x=eval (x_str) ;
y=eval (y_str);
subG=eval (subG_str) ;
Pl=eval (P1_str);
P2=eval (P2_str);
P3=eval (P3_str);

% Rearrange the data matrix
mat=permute (z, [y, x,subG,P1,P2,P3]);

vx=eval ([x_str ' _vector']);
vy=eval ([y_str '_vector']);
vsubG=eval ([subG_str ' vector']);
vPl=eval ([P1_str '_vector']);
vP2=eval ([P2_str '_vector']);
vP3=eval ([P3_str '_vector']);

Gname=[ exName ' ' z_str ' =' x_str ' =' y str ' subG=' subG_str '
' P1_str '=' eval(['num2str(' Pl_str ' vector(iPl),2)']) ' ' P2_str '=' eval(['num2str(’
P2_str ' _vector(iP2),2)']) ' ' P3_str '=' eval(['num2str(' P3_str ' vector(iP3),2)'])];

set (handles.GraphsTitle, 'String', Gname) ;

hold on
for i=1:6
eval ([ 'h=handles.A' num2str(i) ';'])
reset (h) ;
set(h, 'Visible', 'on');
plot(h,1,1);
set (h, 'Visible', 'off');
end
for isubG=1l:1length (vsubG)
eval ([ 'h=handles.A' num2str(isubG) ';'])
set(h, 'Visible', 'on');
if strcmp(z_str, 'opt CL')
contourf('v6' ,h,vx,vy, mat(:,:,isubG,iP1,iP2,iP3), [1 2 3 4]);
elseif strcmp (GraphType str, 'contour')
[C,hl] = contour (h,vx,vy,mat(:,:,isubG,iP1,iP2,iP3));
clabel (C,hl, 'FontSize',8);
elseif strcmp (GraphType str, 'mesh')
mesh (h,vx,vy, mat(:,:,isubG,iP1,iP2,iP3));
end
xlabel (h,x_str);
ylabel (h,y str);
title(h, [subG_str ' = ' num2str(vsubG(isubG))]);
end
datacursormode on
hold off
return;
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4. The mean time function

function [mean]=meanTime (Zco,direction)
meanTime function calculates mean reaction time for a given cutoff point
meanTime (Zco,direction)

Zco - 1s the cutoff point

direction can be 'p' or 'n' - result in different calculations for
positive ('p') and negative ('n') decisions

o

o° oo

o\

global A; %A and B declared in the main program
global B;
if direction=='"p'

mean=A*exp (B*Zco+B*B/2) .* ((l-normcdf (Zco+B) ) ./ (1-normcdf (Zco))) ;
elseif direction=='n'

mean=A*exp (-B*Zco+B*B/2) .* (normcdf (Zco-B) . /normcdf (Zco)) ;
end;
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APPENDIX H - THE RELATION BETWEEN IMAGE COMPLEXITY AND REACTION TIME

Bechar (2006) designed and performed a melon detection experiment in order to examine
different human robot collaboration levels for a specific target detection task in an agriculture
environment. In this work, the experimental data is used to analyze the reaction time of the human

operator. The analysis focuses on the relation between image complexity and reaction time.

1. Melon detection experiment
Full description of the experiment can be found in chapter 6 of Bechar thesis (2006).

Task. The participants of the experiment were asked to detect ready-to-pick melons on a
digital image and mark them on the screen (see example in Figure 36). Some of the participants

fulfilled the task with a help of a robot according to the level of collaboration.

Subjects. 120 IEM undergraduate students were assigned to 10 groups. The participants were

encouraged to achieve high performance through the promise of a monetary award.

Targets database. Melon images were manually selected from a video taken by a camera
moving along a melon row in a field, in various illumination conditions. The melons were partially
covered by leaves and had different colors and sizes. The images were classified into three levels of
complexities (low, intermediate, and high) by a panel of three experts. The image complexity
represents the difficulty level of detecting targets in the image. The location of true targets in each

image was manually identified and saved in a targets database.

Design. In each session, fifteen participants from all experimental groups were seated in a
classroom in front of working stations for target detection that were simulated with a PC and a
program written in MatLab. The participants viewed 180 images, a target was defined as any yellow
or orange melon, and the task was to mark all the targets in the images. The participants were
divided in advance into ten groups, each of which was given one of two objective function weights
(represented by a reward system for minimum false alarm rate or for maximum hit rate), one of two
different robot detection performance qualities, and one of three collaboration levels as shown in
Table 4. In the experiment, the computer simulated the robot operation by picking targets and non-
target objects (marked as false alarms) from the database. The participants received feedback on
their performance during the experiment after each image. The feedback included the current
objective function score (score), the last image number of hits, false alarms and Misses. The

participants had unlimited time to observe the images and the time cost was set to zero.
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Figure 36: An example of the graphical user interface of the experiment.

2. Data preparation

During the experiment the activities of the human operator, the objects marked, and the time

of each action were automatically recorded. The raw data is attached in Appendix I.

Each image in the targets database includes up to three melons. When the human observes
some melons at a time, it is impossible to define what the correct reaction time is for each of the
melons. Furthermore, the image complexity was determined for the whole image and not per melon.
Therefore, only images that contain one melon were used for the analysis (a total of 84 images were
used). Among these images, 30 were of the low complexity images, 35 of the intermediate and 19
of the high complexity images. In this case, the image complexity describes the difficulty to detect a

single melon in the image.

The analysis was performed for records of subjects that worked in the HR collaboration level
and had to remark targets that the robot recommended (if the recommended object is a really a

ready to pick melon). Data from 48 subjects was analyzed (groups 7-10 in Bechar's experiment).
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Table 4: The experimental groups (Bechar, 2006).

Group Collaboration level Reward system Robot quality
No. H HOR HR | MinFA | MaxHit | High Low
1 X X
2 X X
3 X X X
4 X X X
5 X X X
6 X X X
7 X x x
8§ X X X
9 X X X
10 X X X
3. Results

Two time measures were used. The first measure (7 2mark) is the time it took the subject to
mark a target after the image appeared on screen. The second measure (7 2next ) is the time spent
until the subject hits the "Next" button (after the image appeared). The difference between the two
time measures is 1.98 seconds on average (with a standard deviation of 1.34). This is the average

time, which the subject spends in order to recheck his decision and to look for other targets.

For each analyzed group (groups 7-10), two Single Factor ANOVA tests were used (one for
each measure) in order to determine if there is a statistically significant difference between the three
image complexity levels. In all groups (except one case), the detection mean time in high
complexity images was longer than that of low and medium complexity images. Similarly, the
detection mean time in intermediate complexity images was longer than that of low complexity
images (see Tables 5-6). Results indicate that for both of the measures, there is a significant
(a =0.05) difference between the three image complexity levels. P-values in all tests (except for
T 2next in group 8) are less than 0.001(see Tables 7-8). An exceptional case is found in group 8. In
this case, 7 2next of high complexity images (2.56) is lower than that of medium complexity
images (2.62). Despite this, there is significant difference between the three image complexity

levels (P-value = 0.013).

To conclude, the reaction time depends on image complexity and it decreases as image
complexity decreases. This result supports the assumption that human reaction depends on the

strength of the observed object.
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Table 5: Summary of the statistical data of the 72mark measure.

Group | Complexity | Count Sum Average Wariance
1 298 484 52 162590604 | 1156045311
7 2 314 631,786 | 2.012057325 | 2.119545172
3 169 372206 | 2202402367 | 1865087075
1 123 227 848 | 1.852422764 | 1.046291623
] 2 212 556,144 | 2623520755 | 4 BERRE49E7
3 57 146,153 | 2564087719 | 1.434097939
1 298 534 032 | 1786060201 | 2.135163681
9 2 310 714756 | 2309664516 | 3 605807686
3 174 412514 | 2373068266 | 2403088444
1 140 230,172 | 1L.644085714 | 0756511647
10 2 202 429041 | 2123965347 | 1964116651
3 63 171757 | 2726301587 [ 2273193956

Table 6: Summary of the statistical data of the 72next measure.

Group | Complexity | Count sum Average YVariance
1 298 | 1018067 | 2416322215 | 3730352532
7 2 314 | 1228 389 | 3 912066879 | 4 969930427
3 169 | 622,108 | 4095313609 | 2861975705
1 123 | 483787 | 3933227642 | 2162886587
g 2 212 | 992536 | 4681773585 | 8.140790043
2 37 277333 | 4865491228 | 5084170647
1 299 | 1135499 [ 2797655518 | 4.277060817
9 2 310 | 1350314 | 4 355851613 | 6 BITT21467
3 174 | 793326 | 45593445828 | 4. 85237869
1 140 | 201,103 | 3579307142 | 1.964418833
10 2 202 | 819215 | 4055519802 | 3832106434
3 63 207688 | 4883536508 | 4.116458222
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Table 7: Results of Single Factor ANOVA tests of the 72mark measure.

Group SOU.I.’CE:. of 88 df M= F F-alue F criteria
Variation
Bé:;":fesn 4175218401 | 2 | 20.87909201
7 W_thP 1230508762 | 547961E-06 | 2.007207176
i 1320.088977 | 778 | 1696785217
Groups
Béft;ffesn 48 69841737 | 2 | 2434920869
3 W.thF.’ 7641486939 | 0.000555747 | 2.018921644
i 1239528675 | 389 | 3186449035
Groups
Bé:;";eesn 5516909124 | 2 | 2758454562
9 W'thP 9932532723 | 5.5001E-05 | 3.007267446
i 2166 209383 | 780 | 2777191517
Groups
Bé:;ffesn 52986315 | 2 | 264931575
10 W_thP 1900199487 | 1.30214E-08 | 2.012168004
i 560480591 | 402 | 1.394230326
Groups
Table 8: Results of Single Factor ANOVA tests of the 72next measure.
Group :S‘Fou:_rce_ of 55 df L= F P-walue F criteria
ariation
Bé;:’lfe: 6145245977 | 2 | 3072674988
7 W.thp 7.217105492 | 0.000784101 | 3.007297176
IR 2299 206704 | 778 | 4.257489363
Groups
Bé;:fe:l 53.85755206 | 2 | 26.92877603
g W.thp 43861018332 | 0.013070751 | 2.018921644
IR o2ee 000419 | 389 | 6139569201
Groups
Bé;;"’lfe:l 782863356 | 2 | 39.1431678
9 W_thP 721793761 | 0.000783329 | 2007267446
i 422997157 | 780 | 5.4232040474
Groups
Béf:’fe:l 7446659622 | 2 | 37.23320811
10 W.thP 11.42242922 | 1.49661E-05 | 3.018168004
Grl i 1310.37856 | 402 | 2.25964815%
oUps
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APPENDIX I - RAW DATA OF THE EXPERIMENT

The raw data of the experiment is divided by group number and image complexity level
(twelve classes in total). The data details the subject number (S #), the image number (I #), the time
it took the subject to mark the image (T2mark), and the time it took the subject to press the “Next”

button (T2next). The list continues from the left column to the right.

7 26 0903 2212 74 80 1.43 2,659

7 46 1735 2819 74 82 2375 479
?0# z# g';‘;“k ;m“e’“ 7 47 0.684 1633 74 97 1672 4.984
I o e 03 7 48 0919 1775 74 206 1281 3812
I s S 72 54 0898  2.106 74 208 1353 3.156
n N o it 72 57 113 24 74 209 1187 4359
I It e aose 7 63 1022 2214 74 211 1166 3.032
I o e i 72 64 2146 4.634 74 220 2527 3543
n o R 72 67 1.09 2.196 74 21 1244 2689
I b A 7 80 0919  2.009 74 230 1094 3312
I o o s 7 97 1.14 3.687 74 306 125 4531
n o o 7 208 0701 2.289 74 307 1063 2234
I Py Ue%  aus 7 209 096 226l 75 6 136 4078
I P i e 72 220 0824 1788 75 15 1562 2703
n o PRt 72 21 0826  2.259 75 19 1575 5.795
I o NS 7 306 1161 4537 75 26 1105 2.057
I " o e 72 307 1648 2.799 75 46 1343 4.999
n o o e 72 411 0.82 2028 75 47 1391 275
I o LSO 73 6 0938  2.094 75 48 1575 2615
I i v oo 73 15 1578 2.406 75 54 1578 2.625
n Sot 2o 3 73 19 1344 2625 75 57 2437 4483
[ o e a1 73 26 111 2.407 75 63 2171 5249
[ o rerde 73 46 1094 1922 75 64 1749 5342
n o\ 12 3 73 47 1328 2265 75 67 2021 483

' ' 73 48 1235 2.031 75 68 2297 5359

70 306 1703 3.547
[ s S e 73 54 1938 3 75 82 3562 5.406
I by ol e 73 57 1438 2641 75 97 3093 7.03
a p T oo 73 63 1297  2.406 75 206 3015 5343
71 ° TSR 73 64 0953 2312 75 208 3076 4577
n S SV 73 67 1297 2312 75 209 8218 11.045
a 19 oin e 73 68 1297 2203 75 211 1619 2927
71 I o e 73 80 I 1.625 75 220 1765  3.655
n o e 1o 73 82 1.39 2218 75 21 1412 3.054
a o e e 73 97 1578 2.484 75 306 2577 428
71 o o o 73 206 1203 2.078 75 307 1656 3.187
n Y 1 oo 73 208 0.64 1.296 76 6 3746 6.186
7] p N o 73 209 1156 3.609 76 7 3249 5802
71 o T Ao 73 211 1141 1.969 76 15 1644 3122
n P Ul 73 220 1484 2203 76 19 1925 3.959
7] p Tone o 73 21 092 1656 76 26 1878 3383
71 o P 73 230 1031 1828 76 46 3681 5311
n o o T 73 306 1734 2781 76 47 1493 2987
7] o o 549 73 307 1485 236 76 48 1694 3435
71 o ol Vi 73 411 1485 2797 76 54 3532 576
n oo o3 74 6 1719 3.844 76 57 2361 3883
7] oo s aan 74 15 1417 2.649 76 63 2794 4539
n o o 2l 74 19 1109 4252 76 67 1555 3358
n o ooy TST 74 26 1201 3463 76 68 1832 3432
7] 0 o 4o 74 46 1687 2875 76 80 1864 342
71 o oore AT 74 47 1064 2373 76 82 1645  3.774
n 2 Do T 74 48 0964 2379 76 97 3997 9383
7] o T S e 74 54 1172 3765 76 206 6186  8.03
71 s S s 74 57 2015 4453 76 208 5823 7472
n by PR 74 63 1156 3812 76 209 5017 657
s . e o8 74 64 15 4.094 76 211 2018 3281
s s o8ss 1ees 74 67 1166 241 76 220 3499 5.007
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1.335
2.043
4.753
1.252
2.205
1.071
0.889
1.112
0.689
0.737
7.306
1.084
0.792
2.183
1.134
1.517
3.619
1.363
3.863
1.748
1.626
1.241
1.777
0.695
1.548
1.084
2.176
1.536
4.473
0.875
0.984
1.125
0.969
0.844
0.734
0.984
0.828
0.781
1.578
0.89

0.735
0.765
1.078
0.937
0.734
1.859
0.938
0.578

0.89

0.657
0.765
0.828
0.922
0.984
1.044
0.997
1.294
0.952
1.078
0.699
0.966
0.89

0.543
1.025

2.825
3.462
6.242
3.092
3.634
2.461
2.452
2.002
1.722
1.64
9.611
2.878
1.626
4916
3.524
3.601
7.483
3.16
10.261
5.896
6.764
3.969
3.355
1.599
2.851
2.516
5.777
3.833
6.046
1.859
2.203
1.922
2.172
1.719
1.828
1.828
1.781
1.687
2.797
2.078
1.672
1.765
2.156
1.703
1.734
3.094
1.953
1.828
2.156
1.703
1.657
1.922
1.953
1.875
2.031
3.305
3.211
2.635
3.029
2515
5232
2.088
1.983
1.583
3.478

411

1.134
1.31
0.733

1.124
0.901
1.297
1.107
0.749
1.195
0.64

1.013
0.78

0.827
0.962
1.209
1.608
1.377
1.734
1.679
1.437
1.102
1.055
1.762
1.999
1.347
1.857
1.124
1.467
1.52

1.881
2229
1.111
1.595
1.348
1.203
1.117
1.638
1.422
1.378
0.754
0.842
0.947
0.813
0.765
0.576
2.455
2.868
0.704
1.596
0.96

1.041
6.383
2.571
2.363
3.146
4232
0.854
0.88

0.754
0.894
0.902
1.041
0.886
3.744
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3.059
4.24
2.544
3.679
2.483
3.462
4.61
3.242
1.858
4.175
1.53
2.307
1.748
3.024
5.215
2.434
5.587
2.097
3.283
3.136
2.592
2.066
1.762
2.814
3.199
2.725
2.76
1.943
2.518
2.575
2.784
3.411
237
2.725
2.503
2.119
2372
2.498
2.74
2.327
1.715
2.675
1.935
1.788
1.713
1.374
9.022
4.08
1.53
3.084
2.015
2.029
19.579
4.153
9.498
6.215
6.153
1.802
1.855
1.848
1.922
1.774
2376
2.246
7.153

Group 7, image complexity 2:

S#
70

T2mark T2next

1.734
1.5
1.859
2.593
1.984
1.297
2.188
3.14
1.406
2.188
1.937
1.032
1.734
1.969
1.844
2.609
1.86
2438
5.703
1.375
2.016
1.078
3.859
1.656
1.516
2.547
1.906
6.89
3.421
1.312
1.765
1.312
0.672
2.061
12.547
2.562
1.922
2.781
0.781
1.094
2.156
0.812
4.803
1.296
3.64
3.489
1.906
0.938
1.031
1.639
1.219
1.016
5.294
0.921
1.121
5.173
0.929
1.059
2.657
1.106
1.259

3.25
3.032
3.218
4.062
4.281
2.75
3.782
4.531
2.625
3.688
3.031
2.141
3.078
3.531
3.266
4.734
3.156
3.953
6.968
2.906
3.516
2.343
5.656
3.015
2.734
3.937
3.359
8.828
4.843
3.484
5.358
2.859
2.047
9.744
14.328
4.14
3.749
4.812
4.781
2.844
10.296
2.172
6.292
6.996
4.968
5.284
4.828
7.547
2.859
5.887
4.125
2.735
10.369
2.187
232
6.288
2.014
2227
6.422
2274
2.364
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231
303
304
308
320
322
401

27

2.488
0.917
1.697
0.995
0.919
0.938
0.982
2.157
0.872
1.054
1.791
1.337
0.747
2.406
1.682
1.344
1.791
1.547
1.265
2422
1.782
1.046

1.688
1.047
1.328
1.328
1.125
1.891

2.188
1.641
1.016
1.266
1.407
1.093
1.328
1.297
3.125
1.75

2.125
1.25

2.704
2.565
1.312
1.359
1.042
2.203
1.217
1.525
1.86

1.372
0.875
1.756
1.171
1.337
1.781
0.764
2.64

2.594
1.653
1.657
1.937
1.197
1.297
2.937
2.049
0.886
2.719
1.75

1.492
2313
5.342
2.687

3.437
2.285
2.741
2.457
1.62

2.484
2.68

4.094
2.01

2.757
2913
2.799
1.915
4.047
3.239
6.281
2.834
2.265
2.14

4.094
2.61

1.64

3.141
2.485
2.641
2.437
2.125
1.719
3.188
1.656
4.203
2.672
1.766
2.234
2.172
2.046
2.125
2.813
5.016
2.719
5.172
2.141
4.297
3.84

6.046
4312
2.829
7312
2.326
3.497
5516
3.975
2.797
4.714
4.421
2.814
6.172
2.371
6.968
4.641
3213
4.219
3.375
3.529
5.094
5.437
4.683
2.767
5.281

4.943
3.938
7.17

4.406

1.724
5.608
3.093
2.156
2.562
2.859
3.265
1.353
1.531
1.753
3.187
1.075
9.357
3.797
1.611
4.187
1.649
8.092
1.921
1.173
5.764
2.511
271

8.088
4.12

1.252
2217
3.618
2202
2.172
2.203
1.433
2.572
5.834
1.366
5.263
1.785
2284
4329
2.157
1.648
3.975
1.228
6.954

1.182
1.315
1.501
0.98

1.348
2.206
1.946
1.094
1.608
1.056
2.391
2.822
1.209
1.257
1.286
0.848
0.976
1.321
1.716
1.784
1.237
1.753
1.223
1.457
0.917
5.756
0.985
1.25

0.75

114

2.853
9.436
4.296
3.39
7.702
4.108
5.873
2.482
5.14
2.898
5.702
3.024
11.935
6.562
2.563
6.515
2.942
11.061
4.452
2243
12.497
4.903
4.852
9.412
7.685
2.549
3.68
5.761
3514
3.846
3.744
2.956
4.498
8.658
2.887
7.377
3.057
4.057
6.609
3.618
3.373
5.438
2.547
8.797
3.61
2.947
6.981
2.294
2.559
2911
3.769
3.095
2.622
3.754
4.142
4.796
4.932
2.516
2.559
3.145
2.307
2.695
2.572
4.428
2.886
2.905
5.259
2.335
5.562
3.016
7.034
2.531
2.094
1.656

223
224
231
303
304
308
310
320
322
401
14

27

33

1.724
5.608
3.093
2.156
2.562
2.859
3.265
1.353
1.531
1.753
3.187
1.075
9.357
3.797
1.611
4.187
1.649
8.092
1.921
1.173
5.764
2511
2.71

8.088
4.12

1.252
2217
3.618
2202
2.172
2.203
1.433
2.572
5.834
1.366
5.263
1.785
2.284
4.329
2.157
1.648
3.975
1.228
6.954

1.182
1.315
1.501
0.98

1.348
2.206
1.946
1.094
1.608
1.056
2.391
2.822
1.209
1.257
1.286
0.848
0.976
1.321
1.716
1.784
1.237
1.753
1.223
1.457
0.917
5.756
0.985
1.25

0.75

2.853
9.436
4.296
3.39
7.702
4.108
5.873
2.482
5.14
2.898
5.702
3.024
11.935
6.562
2.563
6.515
2.942
11.061
4.452
2.243
12.497
4.903
4.852
9.412
7.685
2.549
3.68
5.761
3514
3.846
3.744
2.956
4.498
8.658
2.887
7.377
3.057
4.057
6.609
3.618
3.373
5.438
2.547
8.797
3.61
2.947
6.981
2.294
2.559
2911
3.769
3.095
2.622
3.754
4.142
4.796
4.932
2.516
2.559
3.145
2.307
2.695
2.572
4.428
2.886
2.905
5.259
2.335
5.562
3.016
7.034
2.531
2.094
1.656



231
303
304
308
310
319
320

1.625
0.891
1.843
0.875
0.843
1.328
3.328
0.891
4.843
1.422
0.938
1.015
1.094
1.203
0.875
2.047
1.531
6.469
1.11

3.015
1.296
1.738
1.273
0.765
1.703
1.217
1.496
1.699
0.92

1.155
1.215
1.467
1.593
2.296
2.281
3.819
1.53

0.947
1.434
1.03

1.263
5234
1.045
0.889
2.92

1.14

1.422
1.688
2.088
1.748
2.71

3.815
1.286
1.011
1.762
1.194
1.47

1.811
1.041
2.389
2.807
3.895
1.718
2.276
2.355
2.082
1.471
1.378
4.002
1.209
1.416
1.639
3.175
2.928
1.303

5.968
1.797
3.703
1.828
1.671
225
4.625
2.75
9.203
2.75
1.704
2.062
2.015
2.125
1.812
4.156
2.5
9.594
3.969
4.125
2.654
4.89
3.338
1.748
8.156
2.404
2.946
3.491
2.759
3.216
3.133
2.529
5.062
3.296
19.281
5.76
2.624
4.238
3.851
2.17
2.713
8.656
3.788
2.404
5.215
2.514
4.14
2.803
3.302
2.592
3918
6.716
2.48
2.159
2.962
2.097
2.786
2.725
2.173
3.413

5.628
3.05

3.706
3.54

2.97

2.555
2418
5.506
2.541
2.304
2.982
5.73

4.888
2.562

7001
7001
7002
7002
7002
7002
7002
7002
7002
7002
7002
7002
7002
7002
7002
7002
7002
7002
7002
7002
7002
7002
7002
7002
7002
7002
7002
7002
7002
7002

231
303
304
308
310
320
322

2.529
278

0.903
3.286
1.134
0.887
2.278
0.887
1.268
0.747
1.562
0.99

0.887
1.478
0.719
5.843
1.015
1.282
0.665
0.92

1.212
0.933
0.734
2.242
0.887
0.734
1.481
0.813
1.626
0.995

4.188
4.083
1.729
8.184
2.535
1.947
5.611
1.656
2.269
1.534
2.522
2.187
1.729
2.572
1.621
7.145
2.029
2323
1.611
2.001
2.129
1.912
1.851
4.124
2.01

1.775
2.548
1.715
2.852
1.974

Group 7, image complexity 3:

402
403
404
406
61
88

102
104
109
201
227
309
312
313

T2mark T2next

3.328
3.235
4312
4.766
2.563
1.75

2.562
1.609
4.469
1.687
1.594
2.985
2.188
2.031
2234
1.187
1.297
4374
1.062
1.484
1.421
2.61

1.406
5.656
0.985
2.89

1.734
0.969
3.046
8.982
2.359
1.672
1.119
0914
0.991
2.391
3.567
1.58

1.223
0.996

115

5.109
4.969
5.843
6.391
3.907
3.218
3.781
3.468
5.938
2.812
2.781
5.578
3.438
3.484
4.109
4.953
6.749
7.217
4.841
2.562
3.249
4.875
3.796
8.843
2.906
8.67
45
2.359
4.53
10.498
5.093
3.515
1.85
1.967
3.36
6.079
4.719
2.804
2.679
1.868

324
325
327
402
404
61

104
109
201
227

1.843
2177
1.028
1.137
1.368
1.157
1.593
2.078

1.593
1.297
1.891
1.562
1.61

1.704
5.234
1.922
1.515
3.066
2.124
1.703
4.015
2.296
3.405
1.648
1.578
1.781
1.197

2.634
1.555
3.672
1.703
1.679
2.124
6.186
5.202
6.342
2312
2.243
1.718
1.501
8.076
2.375
2.021
5.671
1.594
3.675
5.06

3.092
4.098
1.885
2.986
1.778
251

1.517
5.287
1.363
1.44

2.187
2.298
3.551
0.974
3.417
1.001
1.633
1.648
2.198
1.251
0.828
1.344
1.219
0.953
1.375
1.344

4.863
325
1.916
3.037
2.784
1.969
2.468
3.344
5.234
2.39
2.187
275
2.906
2.532
2.375
6.421
3.062
2.359
4314
5.859
6.046
6.578
3.775
5.299
3.342
4.765
4.64
3.218
8.188
4.205
3.202
5.562
7.891
3.235
3.296
7.951
6.827
10.404
4.062
3.462
4.749
3.136
10.451
4.187
4.859
11.014
2.844
5.562
6.442
5.415
5.469
3.303
4.253
3.724
7.694
4.03
8.472
3.37
2.743
3.64
5.348
5.021
2.112
6.236
3.114
3.25
6.952
7.873
3.42
1.781
2.485
3.016
1.797
3.39
2.625



78 312 1.031 1.891 80 306 1.985 4.766 88 57 2.813 4.875

78 324 0875  1.657 81 6 1109 3219 88 68 2406 7.234
78 325 0985  1.985 81 15 1.39 55 88 77 4562 6937
78 327 3.187  4.406 81 19 1281 4172 88 82 2797 5735
78 402 225 425 81 26 0984 2797 88 209 3.468  5.828
78 403 0735  1.625 81 57 1.75 4.984 89 6 1562 3.546
78 406 1531 2.406 81 68 1563 3219 89 15 2218 4.046
79 61 1013 2697 81 77 1204 3516 89 19 1172 3
79 88 1351 475 81 82 1218 2531 89 26 1397 2592
79 96 1288 5914 81 209 2547 5.64 89 57 1406  3.813
79 102 3578 7.125 82 6 0921 3718 89 68 1.609 4515
79 104 2108 4153 82 15 3671 9.265 89 77 1532 4235
79 109 0.781  2.685 82 19 1312 3.078 89 82 1531 339
79 227 1179 447 82 26 1172 2.656 89 209 2891 6172
79 312 2498 4512 82 57 1.547 2938 8001 15 1385  3.618
79 313 4609  7.906 82 68 1406 2.406 8001 19 1107 3.832
79 324 1419 3274 82 77 1766 3.328 8001 48 0878  1.876
79 325 0796  2.123 82 82 1141 2.891 8001 67 1.848 2779
79 402 1717 4107 82 209 1172 2.906 8001 68 1939 3.633
79 403 1218 2389 82 306 1125 3.125 8001 82 1.74 3.187
7001 61 1285 2,158 83 6 2391 9344 8001 97 2017 331
7001 88 2281 3732 83 15 1.75 6.094 8001 208 0823 2,672
7001 96 1926 2.903 83 19 1422 5.656 8001 209 2233 4188
7001 102 3.667  4.902 83 26 1391 4516 8001 211 0985  1.889
7001 104 2,044 3206 83 48 2796 4.062 8002 15 1593 2.703
7001 109 2128 3414 83 57 3782 5953 8002 19 1188 2.609
7001 201 1.651 2512 83 68 2078 6406 8002 26 1078 2421
7001 227 2829 4177 83 77 2719 5.5% 8002 57 4094 6.047
7001 309 1925 3.391 83 82 3515 6.234 8002 68 1062 2.656
7001 312 1.194 2179 83 306 4047 11.59% 8002 77 1.094 275
7001 313 3.08 4.65 84 6 2406 5321 8002 82 1172 2391
7001 324 1.24 251 84 15 1508  4.603 8002 209 1344 3516
7001 325 1349 2575 84 19 1928  3.686
7001 327 2503 391 84 26 2.16 7.552 . .
7001 402 2 3318 84 57 653 8187 Group 8, image complexity 2:
7001 403 1255 2173 84 68 1938 4672
7001 406 1699 2.709 84 77 1404 3.535 S# 14 T2mark T2next
7002 61 1.294 2.308 84 82 2.11 5.033 30 27 1.641 3.828
7002 88 1.948 3.83 84 209 2.395 4.942 20 33 1.328 3.031
7002 96 1.441 2.482 85 15 1.012 1.42 30 41 4344 6.375
7002 102 2.449 7.207 85 26 1.405 1.853 30 69 1.016 5.828
7002 104 0.825 1.682 85 57 4.124 4.827 20 23 1.344 3.547
7002 109 0.99 1.995 85 68 2.171 2.859 30 95 1.547 4.484
7002 201 1.3 2.386 85 77 1.299 1.933 30 105 1.407 4.875
7002 227 1.775 3.056 85 82 4.968 5.687 30 217 1.687 4.249
7002 309 2.495 3.983 85 209 1.313 2.172 30 231 6.406 8.874
7002 312 1.438 2.355 85 306 2.515 3.187 30 303 2.437 4.593
7002 313 1.708 2.976 86 15 1.108 1.826 20 304 1.015 4.796
7002 324 1.168 2.291 86 19 1.42 3.262 30 308 239 4.609
7002 325 1.024 1.988 86 26 1.143 2.081 30 310 2.374 3.874
7002 327 1.481 2.615 86 57 1.535 2.734 20 319 7.031 8.656
7002 402 2.092 3.58 86 68 0.826 1.87 31 27 2.719 4.656
7002 404 0946 1744 86 77 1436 231 31 33 1350 289
7002 406 0.857 1.833 86 82 0.95 1.979 81 41 1.688 6.032
86 209 0.857 2.088 81 42 1.203 2.328
. . 86 306 1761 3397
Gl'Ollp 8, mage compleXIty 1: 87 15 1.239 2.522 S} g; }gz; ;24615
87 19 1224 2371 81 83 0937  3.484
S# 1# T2mark T2next 87 48 1427 2502 81 87 1515 2.59%4
80 15 2063 5.609 87 67 1.366 2748 81 92 1531 4.531
80 34 1406 3.281 87 68 1.029 2417 81 95 1281 2.765
80 47 1765 5812 87 77 1.388  2.985 81 204 2344 5391
80 48 1265 2937 87 80 1535 2717 81 207 0907  2.016
80 57 3.187 5374 87 82 1268 2.462 81 210 1375 2812
80 63 2609  5.093 87 97 Lle4 2388 81 223 0985 2766
80 64 1734 3.937 87 111 1264 3.05 81 224 1875 3
80 67 1281 3718 87 208 0853 2.155 81 310 4969 6859
80 68 2.875 4359 87 209 1.104 - 2.506 81 320 1.828  3.031
80 80 1422 2.734 87 21 0853 1.829 81 322 2063 3.906
80 82 1407 3.281 87 230 1253 2238 81 401 1266 7.109
80 97 6.14 7.64 87 306 1314 2567 82 14 1312 3328
80 206 1203 4531 87 411 1.704  3.985 82 16 7.687  9.172
80 208 1187 2437 88 6 2469 4422 82 33 0719 2.656
80 221 1515 3281 88 15 3359 5.625 82 42 1516 3
80 230 1.609 4265 88 19 2046 6.89 82 62 1125 3.234
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1.047
1.391
10.641
1.25
1.172
1.422
1.25
2.968
2.985
2375
1.875
1.813
2.593
3.093

6.797
5.359
2.937
1.985

1.375
1.922
13.485
2.156
2.406
1.922
5.265
2.562
1.969
4312
5.516
5.062
5.062
2.192
3.119
2.24
2.69
1.82
2.078
1.743
3.995
1.431
2.504
14.155
3.188
1.545
2.14
3.008
1.867
2.535
2.037
4.52
1.835
5.859
1.193
3.281
1.516
1.194
1.239
1.209
5.687
1.297
1.118
1.497
2.406
2.485
0.942
1.094
1.656
1.078
1.677
2.024
1.636
4297
1.701

2.844
2.61
12.172

3.687
2.391
2437
4.297
7.141
3.468
3.25
3.329
10.921
8.39
5.078
9.687
7.219
9.578
4.953
8.454
2.734
3.937
15.11
3.375
13.343
4.11
7.906
5.297
6.062
5.921
8.515
8.546
11.922
4.121
7.247
4.044
3.841
4.257
4.874
4.025
6.354
2.904
3.903
15.545
7.109
2.718
12.416
5.075
3.671
3.857
3.903
7.081
3.188
7.469
1.767
3.89
2.328
1.994
1.783
1.873
6.625
2.094
1.737
2.068
3.859
3.328
1.606
1.734
2.265
1.75
2.266
2.628
2254
5.172
2.56

2.384
1.449
0.984
2.341
0.968
1.163
1.122
2.201
1.583
2.077
2.822
2.99
2.151
0.909
1.418
0.982
1.358
7.645
2216
3.943
1.561
3.148
8.065
0.906
1.412
4.273
1.522
1.704
1.117
3.552
1.94
3.572
12.922
2422
1.875
1.703
2.547
2.563
1.828
1.578
7.406
2282
6.532
8.75
3.485
5.031
2.125
8.39
2.954
2.016
1.688
4.516
1.5
1.594
1.469
2.234
2.281
2.547
1.567
1.719
3.078
2.111
2.547
1.599
2.906
1.469
1.187
3.266
2.718
1.039
2.894
1.164
1.792
1.656
1.099

117

4.348
2.384
1.905
2.888
1.811
2.341
1.917
3.153
2.594
3.202
8.266
4235
3.335
2.184
2.79

1.745
2.201
8.762

4.955
2.858
11.29
9.26
2.118
2.609
6.581
2.88
2.872
2.359
4.805
3.074
5.276
14.828
5.25
4.5
4.078
6.094
4.391
3.594
3.234
8.906

8.516
10.594
6.172
6.75
4.391
10.515
4.891
4.172
3.781
7.828
3.765
3.063
3.594
5.062
5.281
3.938
5323
2.828
4.203
3.352
4.453
2.732
5.469
4.578
2.281
4.813
3.984
2.065
4.11
2.452
15.808
7.604
4.637

8001
8001
8001
8002
8002
8002
8002
8002
8002
8002
8002
8002
8002
8002
8002
8002
8002
8002
8002
8002
8002
8002
8002
8002

224
308
310
320
322
401

0.85
2.032
3.495
10.875
1.485
1.062
1.187
1.281
1.25
1.265
2.188
2.188
2.015
1.094
1.203
1.672
1.735
0.703
1.343
1.172
1.078
1.641
2.062
3.875

1.754
4.511
5.804
13.172
2.735
3.171
2.015
2.953
2.203
2.734
3.563
3.375
3.828
2453
3.094
3.266
2.907
1.672
2.531
4.015
2.812
2.735
3.172
5.422

Group 8, image complexity 3:

T2mark T2next

1.578
2.359
2.359
3.265
6.328
1.891
2.796
2.546
3.828
4.86
1.234
2.015
1.094
1.547
2.968
3.312
2.359
1.437
1.297
3.661
2.657
2.995
2.021
3.234
3.125
2.501
1.821
0.831
1.133
1.246
2.451
1.218
1.046
1.077
3.422
6.004
2.528
1.03
4.891
4.515
2.516
2.203
2
2.203
2.735
2.078

3.953
5.921
4.78
7.077
8.249
3.875
4.093
5.327
5.953
6.016
3.5
3.875
2.344
3.985
10.109
7.015
6.14
3.875
5.344
8.965
5.031
7.222
5.399
4.14
4.047
3.257
2.423
1.45
1.738
2.228
4.327
2.031
2.107
2.903
5.771
7.612
5.262
2.373
7.156
6.562
4.172
3.859
4.156
5.469
4.282
3.187



89

89

8001
8001
8001
8001
8002
8002
8002
8002
8002

324

2.14

2.969
1.474
3.252
3.077
3.356
3.14

3.812
3.125
2.468
1.125

3.359
5.781
2.622
6.594
14.298
4.557
4.781
4.765
5.579
4.234
2.203

Group 9, image complexity 1:

I#
6

7

15
19
26
46
47
48
54

T2mark T2next

1.093
1.11
1.093
0.703
0.734
0.968
1.031
0.859
1.562
1.484
0.906
1.094
0.735
0.703
1.172
0.984
1.281
0.922
0.547
1.11
0.719
1.171
1.328
1.453
5234
0.906
1.015
1.817
1.802
1.288
1.66
1.869
1.325
1.522
2.85
4.223
1.779
3.634
2.483
2.792
1.302
1.553
2.578
2.065
1.193
2.02
1.495
1.257
1.632
4.128
2.366
0.953
1.109
0.703
0.844
0.921
0.641
1
1.578

2.015
2.719
1.937
1.5
2218
1.89
2.172
1.625
2.625
2.594
2.156
1.969
1.594
2.266
1.953
1.843
7.859
2.031
1.578
3.125
1.625
2.406
2.453
2.562
6.359
1.922
2.453
5.622
5.884
3.011
3.6
4.07
3.173
3.483
5.111
5.668
4.809
7.026
3.964
6.689
2.633
5.051
7.329
6.92
3.237
4.282
3.388
2.887
4.512
5.622
9.594
2.594
2.812
2.844
2.281
2.093
1.703
2375
3.921

411

0.86

0.984
0.687
0.844
0.828
0.906
1.266
1.047
0.593

0.593
1.078
0.89

1.078
1.032
1.062
1.75

1.704
2.094
1.297
1.609
1.078
1.609
1.938
1.219
1.578
3.078
1.828
9.125
1.265
2.047
1.391
1.547
3.016
1.844
1.141
1.875
1.484
2.578
1.891
2234
1.547
1.844
4.172
2.141
0.789
1.856
0.919

0.819
0.716
0.453
1.094
2437
1.14

0.881
0.64

0.866
0.531
1.563
1.172
1.206
1.094
0.835
0.929
1.121
1.031
1.125
1.748
1.656
1.439
2.383
1.35

0.825
0.876

118

2.297
2.969
2.047
2.235
225

2.688
2.953
2.359
1.968
2.406
1.75

2.594
2.843
2.61

4.735
3.453
4.484
4.875
6.235
2.938
3.406
3.218

3.641
2.969
3.532
5.64
4.578
11.219
3.078
4.609
3.203
3.297
6.906
7.406
2.672
5.328
3.375
4.484
3.641
5.359
4.812
3.235
6.875
2.984
1.887
2.475
2.569
1.828
2.227
1.743
1.437
2.719
3.515
1.984
2.521
1.547
1.562
1.453
5.344
2.141
2.042
2.203
2.042
1.779
2.289
2.156
2.078
2.847
2.89
3.988
5.588
3.274
2.324
1.89

1.109
6.158
1.14
0.959
1.976
1.116
4.835
6.572
1.533
16.223
1.287
5.469
0.906
1.177
0.72
1.84
1.649
2.137
1.686
12.899
1.063
1.397
1.655
1.299
1.121
0.969
1.207
1.058
1.58
1.578
1.391

1.121
1.188
1.09

1.469
2313
0.957
1.083
1.406
1.261
1.578
1.386
2.051
1.922
1.443
1.25

2.205
2.756
1.867
1.264
1.924
2.613
1.781
1.602
1.095
1.997
1.494
1.423
245

2.517
1.915
2.234
1.908
1.335
1.63

1.928
3.087
2.798
2.156
1.812
1.203
1.703
2.235
2.532



1.578
1.125
1.812
2.891
3.297
1.578
1.984
2.61
1.093
1.86
2.484
2.594
1.031
2.203
6.281
2.235
2.109
1.421
1.734
1.686
1.962
4.64
1.672
1.548
1.738
1.609
2.344
3.047
2.187
2.079
2.609
2.701
2.906
5.359
1.172
2.023
1.703
0.947
1.426
1.769
1.64
1.953
1.226
2.672
0.953
1.11
1.422
1.219
1.515
1.234
0.89
1.64
1.391
1.016
1.469
1.532
1.5
1.265
0.766
1.062
1.703
1.187
1.375
1.281
1.812
2.391
1.609
1.391
1.204
1.265
1.313

1.766
1.547
1.859

2.922
2.593
4.609
5.578
5.109
4.265
3.469
5.734
2.14

4.219
5.968
4.766
2.422
4.844
7.874
3.797
3.531
2.859
3.843
2.698
3.081
6.177
2.547
2.53

3.026
2.89

4.375
5.625
3.859
3.181
4.89

3.926
4.75

8.593
2.531
2.943
3.156
1.63

2.576
2.964

3.156
2.437
4.563
2.656
2.844
2.984
2.562
3.187
2.406
2.359

2.86
2.797
4.875
3.141
6.453
2.953
2.704
2.625
3.156
2.453
2.812
4.547
5.671
5.188
35
3.25
3.703
4312
2.937
3.219
3.156
4.203
4.281

9002
9002
9002
9002
9002
9002
9002
9002
9002
9002
9002
9002
9002
9002
9002

411

1.515
2.063
2.109
1.547
2.016
2.469
2.125
1.625
1.781
1.265
2.047
1.453
2218
1.89

2.828

5.093
3.625
4.093
3.406
3.985
6.765
4.172
3.703
4.047
6.75

3.922
3.562
4.703
5.124
7.047

Group 9, image complexity 2:

I#

T2mark T2next

1.312
2.625
1.219
0.765
5.25
1

1.14
0.735
1.125
2.687
1.5
2.391
3.797
1.344
0.687
1.031
0.781
0.938
2.766
1.125
0.797
3.063
1.406
1.094
2375
1.92
5.925
2.201
1.399
5.877
1.35
1.602
3.444
3.481
1.676
3.111
1.289
2.205
8.946
2.664
1.824
1.787
1.577
2.433
4.86
1.878
2.084
4472
1.553
1.399
7.455
0.859
1.906
1.219
0.687

119

2312
4.203
2.235
1.562
7.047
1.75
1.953
1.703
239
3.562
3.047
3.625
7.297
2.516
2.015
2.687
1.796
2
7.344
2.469
1.672
6.672
2.656
2.032
3.672
4.114
10.81
4.101
4512
12.062
2.592
5.622
5.825
5.083
4.361
4.436
2.674
7.562
18.432
5.966
2.985
4.421
3.662
5.037
8.292
3.601
3.62
14.379
4.011
432
9.297
2.765
4.062
3.079
2.047

304
308

1.531
0.937
0.907
1.031
1.11

0.891
0.89

3.453
0.922
3.031
0.734
1.281
1.266
0.719
1.016
1.109
0.688
0.922
0.828
0.781
1.125
2.328
0.922
3.172
1.641
6.563
1.765
1.547
3.578
1.735
1.766
3.593
2297
3.297
1.422
3.157

1.547
2.063
2.875
1.64
2.156
3.516
1.594
2.281
14.203
3.015
1.359
12.11
2.219
7.765
1.609
1.063
0.68
4.718
0.851
0.82
1.203
0.735
0.703
0.728
0.61
0.696
1.656
2.562
1.469
0.934
0.891
0.843
2.073
0.906
3.749
1.161
0.638
1.562

3.344
2.484
2297
3.422

2.141
2.593
5.235
2438
439

2.343
2.843
3.672
2.203
2.61

2.609
2.359
2375
2.281
239

3.156
3.828
3.063
4.828
3.516
8.36

3.828
3.297

3.204
3.078
5.703

5.078
3.172
5.25
10.969
4.937
6.703
6.172
3.297
4.109
5.328
3.875
3.828
16.625
4.343
2.687
13.641
4.875
9.593
2414
2.109
1.485
7.093
1.779
1.763
3.407

1.359
1.64

1.188
1.237
3.281
5.781
2.578
1.899
2.047
1.484
3.559
1.703
5.031
2.445
1.51

4.406



219
223

1.918
0.891
1.098
1.343
0.968
2.436
3.432
1.229
4.886
1.394
1.184
1.163
0.975
0.795
1.739
3.073
2.574
1.843
1.487
0.974
1.599
0.885
2.021
0.96
4.492
1.421
1.17
0.96
2.327
1.154
1.454
6.765
1.218
1.16
3.078
2.398
1.368
1.5
1.686
1.23
0.959
1.503
4.733
5.391
1.432
2.36
2374
1.494
1.216
1.929
1.16
1.23
5.296
2.119
1.37
4.266
5.584
2.828
1.549
1.62
3.003
2.641
1.339
2.557
1.515
1.79
2417
4.254
1.579
1.684
3.611
2.367
1.587
1.775
2.246

2.955
1.766
2.367
3515
2.29

3.616
4.703
2.699
6.189
2.519
2215
2.746
2.034
1.719
5.742
4.077
4.075
3.872
3.082
2.278
4221
2.114
3.108
1.994
8.427
3.595
2.489
2.014
5.769
2.308
2.862
11.5

3.749
4.811
7.562
4.177
3.859
3.156
3.296
3.357
2.645
3.19

9.389
7.141
3.02

7.781
4.968
3.736
3.707
3.251
3.279
2.749
9.937
5.058
2.942
9.984
8.368
4.969
2.571
5.717
4.009
4.636
4231
3.779
2.968
2.831
4.835
5.769
2.556
2.736
6.519
3.521
3.202
3.091
3.469

320
322

1.63

2.353
1.475
3.189
1.32

1.404
1.924
4.781
3.672
1.656
1.735
2218
3.969
1.641
1.281
1.938
1.781
1.047
1.219
4375
4.094
1.485
1.734
2.687
1.344
1.656
1.297
2.578
3.109
1313
4.672
3.141
1.485

1.828
1.947
3.547
1.487
1.272
1.375
2.031
2.759
1.063
2.499
3.538
3.64

2.593
1.567
7.422
2.116
1.89

1.676
2.238
4.656
1.812
1.536
3.156
1.031
1.39

1.234
2.016
1.609
1.015
2.11

1.734
5.296
1.36

3.593
1.157
1.188
1.157
1.375
1.016
1.016
1.313

120

2.599
5.388
2.388
4.335

2.57

3.067
7.203
7.688
3.953
3.516
4.39

6.797
4.079
3.187
3.61

3.719
2.531
2.906
7.485
6.688
2.875
4.063
3.984
3.125
4.203
3.234
6.031
6.234
2297

4.75
2.797
5.078
3.844
2.852
6.469
2.668
2.361
2.578
3.25
5.335
2.25
3.588
4.655
6.25
3.937
2.653
11.031
3.189
3.14
2.839
4.017
6.531
3.218
2.809
5.203
2.406
3.875
2.734

3.547
2.515
3.969
3.453
7.796
2.61

5.343
2.719
3.125
2.86

3.187
2.469
3.156
3.485

9001
9002
9002
9002
9002
9002
9002
9002
9002
9002
9002
9002
9002
9002
9002
9002
9002
9002
9002
9002
9002
9002
9002
9002
9002
9002
9002
9002
9002
9002

231
303
304
308
310
319
320
322
401

1.125
1.922
2.812
1.922
1.344
5.688
4.781
1.641
1.938
3
225
1515
1.625
1.562
3.125
1.406
4.687
1.485
1.797
1.781
1.515
4.812
15.25
1.859
8.234
1.39
8.359
2.062
2422
4.766

5.593
4.453
8.89
4.421
3.656
8.125
6.64
5.485
3.344
4.485
4.75
6.624
4.89
3.453
5.812
3.844
8.421
3.282
4.219
5.469
6.25
8.546
17.359
3.422
12.891
3.781
12.593
4.047
5.875
7.61

Group 9, image complexity 3:

324
325
327
402
403
61

88

102
104
109
201
227
309
312

T2mark T2next

1.656
1.797
1.766
1.75

1.046
1.14

1.14

0.891
3.766
1.015
1.031
4.969
1.172
1.953
2.522
2.744
3.387
2.889
1.94

3.135
2.277
1.673
5.653
1.686
2919
2.557
1.427
1.956
2.013
2.67

0.828
1.281
1.344
2.281
1.11

1.563
1.094
1.172
1.313
0.953

2.781
2.828
5.094
2.703
2.156
2.328
2.328
1.938
4.922
1.984
3.781
6.391
2.469
3.031
5.176
8.548
6.533
6.771
5.183
4.936
3.936
5.261
8.669
3.524
7.156
4.482
443
17.176
8.503
4.299
2313
3.14
2.797
3.703
3.453
3.344
2.609
2.812
3.141
2.547



4.328
0.844
1.016
2.296
1.328
0.797
0.937
2.281
2.703
3.532
4.985
2.812
2.25
2.157
2.015
3.328
1.391
1.734
2.187
2.89
6.891
2.219
3.672
0.773
0.765
1.328
2.469
1.299
1.037
0.922
0.891
0.887
1.735
0.906
0.851
2.188
1.531
1.238
1.609
1.272
2.014
1.999
1.951
1.921
2.633
1.623
3.283
0.922
1.828
1.245
1.454
1.437
1.937
1.766
6.992
1.671
1.5
1.359
1.448
2.359
1.169
1.377

2.187
1.516
2.278
1.362
8.67

3.106
3.307
6.87

2.923
2.188
2.16

1.669

5.859
2.344
4.016
5.124
3.047
2.984
2.406
4.015
4.547
5.125
7.203
4.89
4.141
4.031
4359
5.125
4531
3.781
3.781
6.546
8.75
4.094
5.531
1.485
1.859
2.953
3.641
2.382
2476
1.813
1.735
1.744
3.047
1.547
1.485
3.266
2.656
2.939
3.435
2.758
3.424
3.167
3.846
432
3.966
5.576
4.363
3.305
2.835
2.624
3.171
2.875
5.265
4.75
8.538
4.161
5.219
3.171
3.736
4218
2.628
3.604
5.437
5.875
4.068
3.904
2.586
10.712
4.621
5.771
8.704
5.432
3.703
4.439
2.751

Group 10, image complexity 1:

S#
100
100
100
100
100
100
100
100
100
100
100

312
313
324
325
327
402
406

I#
15
34

3.259
2.023
1.488
1.776
4.143
2.15
2.137
2.593
3.735
2.25
7.281
2
4.171
4219
1.813
3.766
1.969
425
6.531
1.594
1.266
5.484
6.746
1.785
2.531
1.987
1.453
3.072
3.921
1.549
1.656
2.203
1.562
9.016
1.89
3.5
1.813
1.328
1.125
1.359
1.469
1.437
2.047
1.187
4.156
2.203
4.985
2.859
1.375
1.234
2.172
1.531
1.938
5.562
1.703
1.766
3.172
6.109
4218

T2mark T2next

2.047
0.954
1.968
1.437
0.922
3.89

1.25

1.469
1.609
1.093
1.734

121

4.957
3.161
248
4.794
5.149
3.793
3.562
5.281
5.594
5.422
11.156
3.422
7.765
7.375
3.407
6.094
4.016
6.735
8.765
3.25
2.547
7.109
8.202
3.089
3.843
3.104
2.828
4.174
5.327
3.741
3.062
5.797
6.015
10.906
3.718
4.828
4
5.359
4.203
2.953
3.313
3.281
4.172
2.656
5.969
6.656
7.172
9.172
4.141
3.468
3.828
8.312
6.469
7.468
4218
4.797
7.297
7.703
8.859

4.125
2.532
3.921
2.593
2.156
5.718
2.906
2.656
4.078
2.515
4.891

100
100
100
100
100
100
100
100
101
101
101
101
101
101
101
101
101
101
102
102
102
102
102
102
102
102
102
102
102
102
102
102
102
102
102
102
102
102
103
103
103
103
103
103
103
103
104
104
104
104
104
104
104
104
104
104
105
105
105
105
105
105
105
105
105
106
106
106
106
106
106
106
106
106
106

1.375
1.265
1.609
1.719
1.766
1.281
1.25
1.375
1.611
1.215
0.957
1.041
2.48
1.378
1.763
1.16
1.653
1.32
0.875
2.079
1.063
1.219
1.094
3.985
0.843
1.797
0.906
1.422
0.781
1.281
1.047
1.234
0.765
0.766
1.5
1.578
1.063
1.359
1.687
1.547
225
1.438
2.172
1.625
2.703
1.953
1.796
1.094
4.843
1.771
1.484
2.938
1.375
1.437
2.797
1.094
1.937

1.047
0.922
1.157
0.969
1.938
1.031

1.798
1.221
0.953
2511
1.183
1.845
2.14

1.812
4.621
1.519

2.906
2.953
3.859
5.922
3.656
2515
2.593
5.109
2477
2.021
1.838
1.802
4.177
3.118
3.237
2.349
3.988
2422
1.86

3.094
2.766
5.625
236

5.782
2.156
3.141
1.953

2.203
2.953
2.828
3.218
239

1.922
2.766
4.156
6.094
3.859
5.141
4.344
7.313
2.938
5.563
3.172
3.968
5.797
2.89

2313
5.875
2.828
2.937
3.922
2.859
2.578
4.156
2.719
8.906
2.641
2422
6.094
3.235
4.25

3.891
5.156
3.266
5.815
2.769
3.626
4814
3.38

2917
3.323
2.83

5.862
3.603



106
106
106
106
106
106
106
107
107
107
107
107
107
108
108
108
108
108
108
108
108
108
108
108
109
109
109
109
109
109
109
109
109
110
110
110
110
110
110
110
110
110
110
111
111
111
111
111
111
111
111
111
111
111

Group 10, image complexity 2:

S#
100
100
100
100
100
100
100
100
100
100
100
100
101
101
101
101

1.197
1.798
1.426
1.282
1.123
1.419
1.901
1.203
1.25
1.5
2.703
1.687
1.812
L5
1.125
3.031
1.625
2438
1.797
1.672
1.437
1.578
1.172
2.094
1.016
0.781
1.188
0.86
1.047
1.141
1.172
1.125
1.312
1.297
1.047
1.281
1.265
1.703
1.063
1.485
25
1.391
4.266
7.186
3.577
1.383
2.042
1.783
1.055
1.797
2.15
1.029
2411
1.193

T2mark T2next

1.563
1.734
1.156
1.156
1.672
1.203
1.375
1.187
1.532
3.109
1.594
1.313
1.992
4.961
1.334
1.498

1.991
3.826
2.822
2.674
2.261
3.288
4.102
3.047
4.938
5312
4.593
4.078
4.781
3.485
1.922
4.859
2.39
5

35
3.672
4.703
3.89
2.031
4.016
2.172
1.813
2219
1.735
3.203
2.266
2.781
1.922
2.281
3.797
2.672
3.687
3.078
4.125
4.266
3.391
4.906
3.391
7.469
9.812
5.344
2.588
3.609
3.767
241
3.133
4.131
2.504
4.039
2.639

2.969
4.875
2.578
2.656
3.812
2.578
3.156
3.047
4.407
4.812
3.016
2.766
3.151
7.485
2.741
2.78

101
101
101
101
101
101
101
101
101
101
101
101
101
101
101
102
102
102
102
102
102
102
102
102
102
102
102
102
102
102
103
103
103
103
103
103
103
103
103
103
103
103
103
103
103
103
103
103
104
104
104
104
104
104
104
104
104
104
104
104
104
104
104
104
104
104
105
105
105
105
105
105
105
105
105

1.991
1.322
1.944
0912
0.972
1.103
1.127
6.607
1.228
5.226
1.74

1.43

1.175
1.261
1.189
1.25

1.125
2219
2.578
1.14

1.422
1.625
1.609
1.578
4.063
3.359
1.735
0.984
4.062
1.062
2313
4.797
1.704
2.937
2.75

4.734
2.203
1.484
5.985
4.062
5.141
2.172
1.657
2.86

2.063
3.968
5.672

1.219
2.938
2.204
1.187
1.531
1.703
1.297
1.875
2.952
2.157
1.849
2.063
1.29

1.438
1.546
1.25

3.641
1.249
1.578
2.688
1.219
0.906
3.125
1.156

1.625
1.328

122

2.812
2.036
4.496
1.611
3.617
1.724
2.286
7.987
2.004
6.854
4.467
2.098
2.335
2.522
2.224
2.516
2.484
3.984
3.875
2.953
2.579
2.812
3.218
3.594
5.688
5.516
3.156
4.874
5.656
2.484
4.875
8.453
4.297
4.125
6.468
11.391
4.719
3.312
9.516
5.687
14.953
3.437
5.75
4.61
3.438
5.375
9.782
5.766
2.781
4.188
3.891
2.094
2.828
3.156
2.484
2.922
4.568
4.094
2.781
4.032
2.455
3.86
2.703
2.281
5.016
2.718
9.031
10.656
4.985

4.296
2.734
6.141
4344
2.687

105
105
105
105
105
105
105
105
105
105
105
105
105
105
106
106
106
106
106
106
106
106
106
106
106
106
106
106
106
106
106
106
106
106
107
107
107
107
107
107
107
107
107
107
107
107
107
107
107
107
107
107
107
108
108
108
108
108
108
108
108
109
109
109
109
109
109
109
109
109
109
109
109
109
109

0.719
1.25
1.312
2.938
2.125
1.312
5.141
1.453
1.546
5.671
2.266
6.078
1.282
3.859
2.186
1.787
1.706
1.768
1.647
1.613
1.429
2.781
1.324
1.76
3.009
2.674
1.474
1.121
1.97
1.429
2.879
4.717
3.994
1.515
1.578
5.093
1.204
1.125
25
1.781
1.219
0.984
0.813
3.344
1.109
1.14
1.187
225
1.188
3.469
1.141
1.828
3.781
3.609
1.718
1.078

1.703
1.656
3.297
4.25

1.359
1.125
0.969
1.547
1.125
2.359
1.906
0.907
1.64

1.016
1.532
1.218
1.016
0.812

1.781
2.75
3.734
4.86
3.453
5.875
6.922
3.156
5.984
10.296
3.891
7.484
5.469
6.219
4.177
2.756
2.827
4.063
2.56
6.311
2.75
4.364
2.115
2.524
3.892
5.512
2.754
1.843
4357
2.243
3.684
5.55
5.392
4.407
3.89
8.578
4.422
2.797
4.171
2.797
3.078
1.859
1.579
5.953
3.171
2.156
3.422
3.36
2.141

2.578
3.687
5.094
5.515
6.218
2.093
3.875
3.593
3.609
4.047
6.016
2.219

2.625
2.438
3.75

3.281
2.734
1.86

2.968
2.219
2.703
2.093
1.969
1.75



109
109
109
109
109
109
110
110
110
110
110
110
110
110
110
110
110
110
110
110
110
110
110
110
110
110
110
111
111
111
111
111
111
111
111
111

Group 10, image complexity 3:

S#
100
100
100
100
100
100
101
101
101
101
101
102
102
102
102
103
103
103
103
104
104
104
104
105
105
105
105
105
105
106
106
106
106
106

231
308
320
401

1.016
2.656
1.25

0.828
1.297
2.078
6.516
2.187
2.547
1.218
1.172
225

1.656
1.594
1.329
1.265
2.109
1.204
4.765
1.562
1.172
2.094
1.235
1.547
2.578
2.063
2.125
1.63

1.177
3.342
3.931
1.058
4315
2.78

2.666
2.085

T2mark T2next

2.375
1.813
2.703
3.953
5.469
2.281
2.597
3.158
1.035
1.17
1.282
1.141
2.343
2.5
3.188
5.531
6.359
6.203
1.469
2.125
2.578
2.094
1.828
2.016
5.547
2.078
2.344
1.36
1.968
2.822
2.305
2317
2.51
1.444

2
5.078
2.203
1.75
3.516
4344
8.047
5.406
4.593
3.343
3.453
4.828
4.187
3.907
3.438
2.547
3.39
2.813
8.046
3.641
4.781
3.734
3.61
2.907
3.812
4.11
4.11
4.012
2.67
4.585
5.71
2251
5.636
3.854
4.449
522

3.75
9.828
6.219
5.531
6.938
3.469
4.178
6.425
2.611
1.793
2.394
3.422
3.968
6.265
5.188
8.375
12.234
7.562
2.906
3.969
3.937
3.157
3.766
6.61
7.141
9.516
4.625
3.204
4.171
4.885
3.982
5.674
4.12
4.102

106
106
106
106
106
107
107
107
107
107
108
108
108
108
108
109
109
109
109
109
109
110
110
110
110
110
110
111
111

2.575
4.032
2.295
7.007
1.368
7.703
3.734
4312
1.297
1.828
3.046
1.828
3.187
1.203
1.563
3.282
1.079
2.484
2.39

3.594
1.281
1.875
2.688
3.484
1.687
1.172
1.719
3.466
2.672

123

3.458
6.173
4.589
7.812
2.996
8.75

4.844
5.234
2.188
2.89

4.562
3.469
6.405
2.797
4.109
4.391
3.328
4.265
3.64

4328
3.016
4.578
7.454
5.406
3.562
2.891
4.156
5.261
5.221
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