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Abstract

This work presents development, analysis and evaluation of algorithms for dynamic
switching between collaboration levels in a human-robot target recognition system to
maintain maximum system performance despite deviations in the performances of both
human and robot during task performance. This research is based on a system objective
function that was designed to enable determination of the expected value of task
performance, given the parameters of the system, the task, and the environment using signal
detection theory (Bechar et al., 2006). The collaboration levels were based on ten degrees of
autonomy from Sheridan’s (Sheridan, 1992) scale of “action selection and automation of
decision”.

Four different algorithms for dynamic switching were developed and tested using
numerical analysis for different scenarios and different distributions of the parameters. The
algorithms were designed to switch the system to the best collaboration level by calculating
the best objective function score with the current human, robot, environment and task
parameters. The design of these algorithms considers the limitation of the switching
execution frequency, the number of levels to be shifted at one time, the system’s response
time and the changes of the parameters due to this response time. The four algorithms differ
by the conditions for making the switch between collaboration levels. Algorithm “RLSA” -
regular switch algorithm, makes a switch whenever the gain of the switching is positive.
Algorithm “CTSA” - constrained switch algorithm, makes switches whenever the gain of the
switching is higher than a desired threshold. Algorithm “CFSA” - constrained without
frequency limitation switch algorithm, also makes switches whenever the gain of the
switching is higher than a desired threshold like in “CTSA” algorithm but with no limitation
of the switching execution frequency. Algorithm “PRSA” - predictive switch algorithm,
makes switches by including predictions from past data to operation of “CFSA” algorithm. It
switches the system to the optimal collaboration level only when this collaboration level was
optimal in most image samples analyzed by the system.

System performance was analyzed in simulations for a variety of target probabilities
distributions. Improvements that can be achieved by each algorithm were calculated as a
mean value for 200 independent simulation ‘runs’ for each target probability distribution.
Results indicated that when there is a limitation of the switching execution frequency, the
switching does not always improve results but sometimes decreases the overall system
performance. Thus, introducing dynamic switching mechanism may actually lower
performance if the system uses non-optimal methods for the switching operation (like manual
or stochastic switching). Therefore, well designed algorithms are necessary to make dynamic
switching in human-robot system effective. The detailed design of such algorithms is
presented in this work. The numerical analysis results indicated that the developed algorithms
for dynamic switching achieved improved system performance.

Keywords:

human-robot interaction, dynamic switching, collaboration levels, target recognition.

Vi



1 Introduction

1.1 Problem description

In recent years intelligent machines, especially computers, can perform many
functions that at one time could only be done by humans. Machine execution of such
functions or automation has also been extended to functions that humans do not wish to
perform, or cannot perform as accurately or reliably as machines (Parasuraman et al., 2000).
This led to the introduction of automation into virtually all aspects of human-machine
systems.

Today, robotic systems perform well only when all conditions are known and well
defined. Autonomous robots do not perform well in real-world environments which are
dynamic and unpredictable (Al-Jumaily and Amin, 2000; Fletcher et al., 2005). They cannot
cope with unexpected situations encountered in unstructured, changing ‘“real-world”
conditions (Bechar and Edan, 2003). Inadequacies of sensor technologies further impair the
capabilities of autonomous robotics (Everett and Dubey, 1998). Complexity is further
increased when dealing with natural objects such as in medical and agricultural
environments, due to the object’s high degree of variability in shape, texture, color, size,
orientation and position. Consequently, the robotic systems become increasingly
cumbersome, thereby creating a complicated system which is expensive to develop and
operate (Bechar, 2006) and not robust enough.

Target recognition is an essential part of most robotic systems (Bicho et al., 2000; Ye
and Tsotsos, 1999). However, target recognition in unstructured environments is
characterized by low detection rates and high false alarm rates (Bechar et al., 2006).

Humans excel in recognition capabilities (Ayanna, 2006) and can easily adapt to
changing environmental and objective conditions (Pook and Ballard, 1996). Human
perception, acting and thinking capabilities in dynamic environments are unmatched to those
of robots. However, a human operator is inconsistent, tends to fatigue and suffer from
distractions (Swets et al., 2000), and ultimately might reduce the system’s production rate
relative to that of a fully autonomous system in a structured environment (Bechar et al.,
2006).

By combining the advantages of human perception and recognition skills with the

autonomous robots’ accuracy and consistency a cooperative human-robotic system can



increase target identification rate and reduce the complexity of the robotic system
(Parasuraman et al., 2000), and handle unpredictable conditions that autonomous systems are
incompetent to deal with (Pook and Ballard, 1996). Different researches focus on different
applications of human-robot collaboration. Sheridan (1992) divides automation into ten
levels, from fully autonomous, with no human intervention to fully manual. Scholtz (2002)
describes five roles that a human may take when interacting with a robot: supervisor,
operator, mechanic, peer and bystander. Ayanna (2006) focused on role allocation in Human-
Robot collaboration for space missions. Bechar et al. (2006) defined four human-robot
collaboration levels for target recognition tasks in unstructured environments (Bechar et al.,
2006). An objective function was developed to determine the expected value of task
performance given the parameters of the system, the task, and the environment (Bechar et al.,
2006).

1.2 Research significance and contributions

Combined human-robot target recognition system performance depends on
environmental conditions (e.g., illumination, visibility, terrain type), human conditions
(fatigue, stress, workload), and system parameters (error, accuracy, reliability, Bechar et al.,
2006). Thus, the system performance might vary rapidly during task performance. This
brings a strong interest in making the human-robot system dynamic and flexible, allowing it
to make switches between different collaboration levels in order to maintain adequate results.

This research introduces a dynamic control mechanism for an uncontrolled human-
robot system that is responsible for switching between different collaboration levels for target
recognition tasks in unstructured environments in form of a logical controller. The control
methodology considers the most important limitations of a combined human-robot system,
processing time and bandwidth. This methodology allows to maintain high system
performance despite possible deviations in the parameter values during task performance.

Several algorithms were developed for the logical controller to allow real-time
dynamic switching of the collaboration levels. The algorithms were implemented in a closed-
loop control process and their performances were simulated numerically for different
parameters and conditions.

These developments enable smooth real-time adaptation of the combined human-
robot system to many possible changes of the conditions and parameters during system’s task
performance, like changes in the environment, human operator time lags and robot

performance. It was shown that the overall system performance was increased in case of



rapid changes of the environment and the system and can be implemented to many combined

human-robot systems to increase performance.

1.3 Thesis structure

The thesis is organized as follows: chapter 2 presents the scientific and technological
background on automation and autonomous robots, teleoperation and human-robot
collaboration, filtering and control, signal detection theory and review of previous work on
collaboration levels in target recognition tasks. Chapter 3 presents the methodology which
starts with the description of the problem of dynamic switching of human-robot system for
target recognition tasks in unstructured environments, continues with the outline of the
methods, definitions of major terms, the research assumptions, a presentation of the controller
design, a brief presentation of switching objective function and of the proposed algorithms
and the numerical computations conducted. The formulation of the switching objective
function which includes mathematical expression of the switching objective function is
presented in chapter 4. The development of four switching algorithms for the controlled
dynamic switching operation is presented in chapter 5. Chapter 6 presents numerical analysis
of switching algorithms and their operation. Conclusions and discussion of future research is

discussed in chapter 7.



2 Scientific and technological background

The scientific and technological background includes a review of automation and
autonomous robots, teleoperation and human-robot collaboration, filtering and control
theories. Signal detection theory and previous research methods that served as the basis for the

development of the thesis methodologies are also reviewed.

2.1 Automation and autonomous Robots

Machines, especially computers, are now capable of performing many functions that
at one time could only be performed by humans. Machine execution of such functions or
automation has also been extended to functions that humans do not wish to perform, or
cannot perform as accurately or reliably as machines (Parasuraman et al., 2000). This led to
the introduction of automation into virtually all aspects of human-machine systems.

The Oxford English Dictionary (1989) defines automation as:

1) Automatic control of the manufacture of a product through a number of successive
stages;

2) The application of automatic control to any branch of industry or science;

3) By extension, the use of electronic or mechanical devices to replace human labor.

According to Parasuraman et al. (2000), automation is not all or none, but can vary
across a continuum of levels, from the lowest level of fully manual performance to the
highest level of full automation (see Table 2).

Autonomous robots are robots which can perform desired tasks in unstructured
environments without continuous human guidance. They are best-suited for applications that
require accuracy in recurrences and high yield under stable conditions. Usually autonomous
robots are used in structured environments, such as the production floor in a plant, and are
required in fields, which demand reduction in manpower and workload (Holland and Nof,
1999).

A fully autonomous robot has the ability to (Murphy, 2000):

e Gain information about the environment.

e Work for an extended period without human intervention.

e Move either all or part of itself throughout its operating environment without

human assistance.
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e Avoid situations that are harmful to people, property, or itself unless those are

part of its design specifications.

According to Rucci et al. (1999), autonomous robotic systems must possess a high
degree of flexibility in order to adapt to the continuously changing conditions of the
environment as well as to the information from their own sensors and motors. There are two
important challenges which designers of autonomous robotic systems often face (Ng and
Trivedi, 1998). The first deals with the nonlinear, real-time response requirements underlying
the sensor—motor control formulation. The second deals with how to model and use the
approach with which a human will address such a problem (Ng and Trivedi, 1998).

According to Murphy (2000), there are currently three paradigms for organizing
intelligence in robots: hierarchical, reactive, and hybrid deliberative/reactive (Figure 1). The
paradigms are described in two ways:

1. By the relationship between the three commonly accepted primitives of robotics:

SENSE, PLAN, and ACT (Table 1).
2. By the way sensory data is processed and distributed through the system.

“If a function is taking in information from the robot's sensors and producing an
output useful by other functions, then that function falls in the SENSE category. If the
function is taking in information (either from sensors or its own knowledge about how the
world works) and producing one or more tasks for the robot to perform that function is in the
PLAN category. Functions which produce output commands to motor actuators fall into
ACT.” (Murphy, 2000).

Table 1: Robot primitives defined in terms of inputs and outputs (Murphy 2000).

Robot primitives Input Output
SENSE Sensor data Sensed information
PLAN Infor_matlon (sensed and/or Directives

cognitive)
ACT S_enseq Information or Actuator commands
directives

Application of autonomous robots in dynamic and changeable environments still
produces inadequate results. Therefore, the use of an autonomous robotic device is not
advisable (Al-Jumaily and Amin, 2000; Penin et al., 1998). An example can be seen in
recognition tasks, where inadequacies in sensor and image processing technology have
limited the capabilities of autonomous robotics in complex environments (Everett and Dubey,

1998). Moreover, having an automated system handle all conceivable scenarios is extremely



difficult and the promise of automatic and efficient remote operations has fallen short of
expectations (Fletcher et al., 2005; Steinfeld, 2004).

SENSE PLAN ACT
(@) ( 1
(b) SENSE [« ACT
PLAN
(c)
ACT < SENSE

Figure 1: Three paradigms for organizing intelligence in robots: (a) Hierarchical, (b) Reactive, and (c) Hybrid
deliberative/reactive (Murphy, 2000).

2.2 Teleoperation and Human — Robot collaboration

“Teleoperation arose as an intermediate solution to tasks that required automation but
for which robots could not be adequately programmed to handle” (Uttal, 1989).
“Teleoperation methods typically are cognitive fatiguing, require high communication
bandwidths and short communication delays, and require one or more teleoperators per
remote” (Uttal, 1989).

“Teleoperation is when a human operator controls a robot from a distance (see Figure
2). The operator and robot have some type of master-slave relationship. In most cases, the
human operator sits at a workstation and directs a robot through an interface. The teleoperator
cannot look at what the remote is doing directly, either because the robot is physically remote
or the local has to be shielded” (Murphy, 2000). Therefore, “the sensors which acquire
information about the remote location, the display technology for allowing the operator to see
the sensor data, and the communication link between the local and remote are critical
components of a telesystem” (Uttal, 1989).

According to Wampler (1990), teleoperation is best suited for applications where:

e The tasks are unstructured and not repetitive.

e The task workspace cannot be engineered to permit the use of industrial

manipulators.



e Key portions of the task intermittently require dexterous manipulation, especially
hand-eye coordination.

e Key portions of the task require object recognition, situational awareness, or other
advanced perception.

e The needs of the display technology do not exceed the limitations of the
communication link (bandwidth, time delays).

e The availability of trained personnel is not an issue.

“A teleoperator is a machine that extends a person's sensing and/or manipulating
capability to a location remote from that person” (Sheridan, 1992). “Virtually, by its
definition, every human-robot collaborative system has a teleoperator. Since their first
appearance in the 40’s, many teleoperated systems have been developed and employed for
dealing with unstructured environments and in applications where there is clear and
unavoidable danger for the human operator” (Sheridan, 1992).

In addition, robots are already increasingly being used in assistive technology,
rehabilitation, surgery, therapy, service and entertainment domains. Methods which will
enable easy and effective communication between robots and humans are crucial in all of
these areas (Salter et al., 2004).

2.2.1  Human-robot collaboration models

According to Sheridan (1976), a telerobotics manipulator is a more advanced form of

teleoperation in which a human operator supervises a robot through a computer moderator.

| REMOTE |
______ | |
:_ LOCAL | | Sensor |
Display | . Mobility |

| ommunication
| | |
Control | | Effector |
SR 4 | |

Power

L ————— |

Figure 2: Organizing chart of a telesystem (Murphy 2000).
According to Sheridan (1992), human-robot collaboration means that one or more
human operators are intermittently or continuously programming and receiving information

from a computer that interconnects through artificial effectors and sensors to the controlled



process or task environment. “A man-machine system is an operating combination of human
and equipment components, interacting to bring about, from given inputs, some desired
outcome within the constraints of a given environment” (Sanders and McCormick, 1993).
Humans have superior recognition capabilities and can easily adapt to changing
environmental and object conditions (Rodriguez and Weisbin, 2003). Their acute perception
capabilities enable humans to deal with a flexible, vague, changing, and wide scope of
definitions (Chang et al., 1998). However, a human operator is not consistent, tends to
fatigue, and suffers from distraction (Van Erp et al., 2004). In addition, human operators are
known to make mistakes of overlooking collisions with surrounding objects, which result in
expensive repairs and limit the system's effectiveness. People seem to be unable to navigate
and manipulate remote equipment without colliding with objects in the environment
(Ivanisevic and Lurnehky, 1998). The operators of many systems are expected to make
control responses to bring about the desired operation of the system as implied by the input.
In the absence of any scheme for helping the operator, such control can be complicated with
higher-level control orders (Sanders and McCormick, 1993). “With respect to tracking
performance, people perform about as well with a zero-order control system as they perform
with a first-order control system, but performance really deteriorates when a second-order
control system is used. Tracking error can increase from 40 to 100 percent” (Wickens, 1986).

Wickens (1984) identifies specific information processing limitations of a human

operator that affect tracking performance, i.e., processing time, bandwidth, and anticipation:

e Processing Time - People do not process information instantaneously, hence there
is a time delay between a change in a target and the initiation of the responses
required to track the target. The magnitude of the time delay is dependent on the
order of the system being controlled (McRuer and Jex, 1967).

e Bandwidth refers to the upper limit of frequency with which corrective decisions
can be made, and hence the term defines the maximum frequency of a random
input that can be successfully tracked. This bandwidth is normally between 0.5
and 1.0 Hz (Elkind and Sprague, 1961).

e Anticipation - Often operators must track targets by using systems that have time
lags or that respond sluggishly to control inputs. This requires that the operator
anticipate future errors based on present conditions and then make control
responses that are expected to reduce that anticipated future error. Unfortunately,

humans are not very good at anticipating future outputs, especially for slow,



sluggish systems. Part of this difficulty is due to the limitations inherent in
working memory. Making the calculations necessary to predict the future state of

a higher-order system can stress all but the most experienced operators.

In reviewing the research relative to the possible merits of visual analog pursuit
versus compensatory displays, Poulton (1974) concluded that when there is a choice between
the two, a conventional pursuit (true motion) display is preferable to a compensatory (relative
motion) display. Pursuit displays are generally better than compensatory displays since the
operator can see the separate effects of target and controlled-element movements on the error
generated. This makes it easier to predict the target's course and to learn the consequences of
various control actions on the movement of the controlled element (Sanders and McCormick,
1993).

According to McCormick (1993), a man-machine system has certain properties or
characteristics, including a purpose or objective; human components; system functions
(sensing, information storage, information processing, decision, and action functions); system
components (both men and machines); procedures; communication links; and some form of

input and output (Figure 3).
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Figure 3: Types of function performed by man or machine components of man-machine systems (McCormick, 1993).

According to Rodriguez and Weisbhin (2003), human and robot skills are
complementary. The human perception, acting and thinking capabilities in dynamic
environments are unmatched to those of robots, but there can be huge potential risks to
human safety in getting these benefits. Robots provide complementary skills in being able to
work in extremely risky environments, but their ability to perceive, think, and act on their
own is far from flawless.

Technical developments in computer hardware and software now make it possible to
introduce automation into virtually all aspects of man-machine systems. By taking advantage

of the human perception skills and the autonomous systems’ accuracy and consistency the



combined human-robotic system can be simplified, resulting in improved performance
(Parasuraman et al., 2000).

McCormick (1993) defines different types of man-machine systems. “A closed-loop
system is one that involves some continuous process which requires continuous control and
in which there is feedback of some form that contributes to the continuous control process.
An open-loop system is one in which feedback (if any is provided) does not contribute to
subsequent control of the system (an open-loop system may be a continuous system, or non-
continuous). A manual system is one in which power is supplied by the human being;
typically it involves the use of non powered devices such as hand tools. A semiautomatic
system is one in which all functions are performed by a machine component under human
control. An automatic system (typically a closed-loop system) is one in which all functions
are performed by the machine, including, in particular, the sensing and control functions; it is
self-correcting” (McCormick, 1993), (Figure 4).
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Figure 4: Schematic illustration of manual, semiautomatic, and automatic man-machine systems. In the case of
closed-loop (continuous) system, feedback information about conditions of the process is transmitted to the sensor

(man or machine) for use in making necessary corrections in the control of the system (McCormick, 1993).
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2.2.2  Human-robot collaboration advantages

Penin et al. (1998) state five reasons for using telerobotics: i) ability to do and
improve outage-free maintenance in countries with strict regulations regarding the interaction
of humans with energized components; ii) increase the safety and comfort of the workers; iii)
decrease the cost by eliminating the need for the operator to work in a hazardous
environment; iv) ability to work under moderate bad weather conditions; and v) decrease in
labor requirements.

The motivation for developing human-robot collaboration control has several reasons
(Sheridan, 1992). First, it combines the advantages of the robot with the advantages of the
human operator. Specifically, it achieves the accuracy, reliability and high yield of the robot
with the cognitive capability and adaptability of the human. Moreover, by collaboration, the
workload of the human operator is reduced and in the event of robot or human failure, either
can reduce the damage. Second, it makes control possible even where there are time delays in
communication between human and robot. Last, it saves lives and reduces cost by eliminating
the need for the human operator to be present in hazardous environments (Sheridan, 1992).

According to Parasuraman et al. (2000), robot execution has been extended to
functions that humans do not wish to perform, or cannot perform as accurately or reliably as
robots. On the other hand, there is a large and rapidly developing class of technical systems
that are dependent on human contribution for their operation.

“Telepresence techniques attempt to create a more natural interface for the human to
control the robot and interpret what it is doing and seeing, but at a high communication cost”
(Murphy, 2000). “Supervisory control attempts to delegate portions of the task to the remote,
either to do autonomously (traded control) or with reduced, but continuous, human
interaction (shared control)” (Murphy, 2000).

Various teleoperated systems, such as in space, nuclear reactors, and chemical
cleanup sites provide excellent examples of human-robot collaboration in which the human
operators plan and guide the motion of remotely situated devices through interaction with
computer (lvanisevic and Lurnehky, 1998).

Bechar and Edan (2003) provide proof of the advantage of such collaborations in
target recognition tasks. According to their research, collaboration of human and robot
increases detection by 4% when compared to a human operator alone and by 14% when
compared to a fully autonomous system. In addition, when compared to the human alone,

detection times of integrated systems are reduced by 20%.
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2.2.3 Human-robot collaboration levels

Sheridan (1992) divided human-robot collaboration into ten levels from fully

autonomous, without human intervention, to fully manual (Table 2).

Table 2: Levels of automation of decision and action selection (Sheridan, 1992).

HIGH 10. The computer decides everything, acts autonomously, ignoring the human
9. Informs the human only if it, the computer, decides to
8. Informs the human only if asked to, or
7. Executes automatically, then necessarily informs the human, and
6. Allows the human a restricted time to veto before automatic execution, or
5. Executes that suggestion if the human approves, or
4. Suggest one alternative
3. Narrows the selection down to a few, or
2. The computer offers a complete set of decision/action alternatives, or

LOW 1. The computer offers no assistance; human must make all decisions and actions

According to Sheridan (1992), human-robot control involves complex and flexible
systems where operators have free will in planning, setting goals, and evaluation. Setting
goals and decision making seems to be the most difficult aspect of human-robot control to
model (Sheridan, 1992). In addition, “modeling free will seems paradoxical, since free will is
determined from within the operator and not by an outside source” (Sheridan, 1992). This is
also the reason why mental events can only be inferred and cannot be directly measured.

Parasuraman et al. (2000) outlined a model for types and levels of automation which
attempt to provide a framework and an objective for making such choices. This model
proposes that automation can be applied to four generic classes of functions: information
acquisition, information analysis, decision and action selection and action implementation.
Each class is independent and has its individual degree of automation which is determined by
applying Sheridan's automation scale (Table 2). The model has two evaluation criteria. The
primary criterion concerns the reduction in human capabilities due to the degree of
automation. The second criterion concerns the automation reliability. Being an iterative

model, the degree of automation can be changed after each evaluation.
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2.3 Signal Detection Theory

“Signal Detection Theory (SDT) is used to analyze data coming from experiments
where the task is to categorize ambiguous stimuli which can be generated either by a known
process, called the signal or be obtained by chance, called the noise in the SDT framework”
(Green and Swets, 1966).

The starting point of signal detection theory is that nearly all decision making takes
place in the presence of some uncertainty. “Signal detection theory provides a precise
language and graphic notation for analyzing decision making in the presence of uncertainty”
(Heeger, 1997).

This theory is often used in target recognition tasks, in radars or optical devices where
picture sampling and identification of a target in these pictures is always characterized by
uncertainty and presence of noise. Typical SDT chart for that purposes is presented in Figure
5.
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Figure 5: Internal response probability density functions for noise alone and for signal plus noise trials.

The goal of detection theory is to estimate two main parameters from the
experimental data (Green and Swets, 1966). The first parameter, called d’, indicates the
strength of the signal (relative to the noise). The second parameter called 3 criterion, reflects
the strategy of response of the subject. In the detection process there are four types of
responses: 1) hit — when a detector recognizes a target; 2) miss — when a detector does not
recognize a target; 3) false alarm (FA) — when a detector recognizes a non-target object as a
target; and 4) correct rejection (CR) - when a detector detects a non-target object as a non-

target.
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Table 3: Classification of detections.

Reality/Detection Yes No
Signal Present Hit Miss
Signal Absent False Alarm Correct Rejection

Perhaps the simplest strategy that the subject can adopt is to pick a criterion location
along the internal response axis. Whenever the internal response is greater than this criterion
they respond "yes". Whenever the internal response is less than this criterion they respond
"no™ (Brown and Davis, 2006).

An example criterion is indicated by the vertical line in Figure 6. The criterion line
divides the graph into four sections that correspond to: hits, misses, false alarms, and correct
rejections. On both hits and false alarms, the internal response is greater than the criterion,
because the detector is responding "yes". Hits correspond to signal-plus-noise trials when the
internal response is greater than criterion, as indicated in the Figure. False alarms correspond
to noise-alone trials when the internal response is greater than criterion, as indicated in the
Figure (Brown and Davis, 2006).
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Correct
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HN Hs Internal response

Figure 6: Example of a criterion line that divides the density functions into four sections

When the detector chooses has a low criterion, it will respond "yes" to almost
everything. Then it will never miss a signal when it is present and therefore result in high hit
rate. On the other hand, when responding "yes" to almost everything, the number of false
alarms will also be increased. Thus, there is a cost to increasing the number of hits, and that

cost is paid in terms of false alarms. If the detector chooses a high criterion then it responds
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"no" to almost everything. It will rarely make a false alarm, but it will also miss many real
signals (Brown and Davis, 2006).

There is no way that the detector can set its criterion to achieve only hits and no false
alarms, unless the sensitivity also changed; it is inevitable that some mistakes will be made
(Brown and Davis, 2006). Thus the detector cannot always be right. “It can adjust the kind of
errors that it makes by manipulating its criterion, the one part of this diagram that is under
their control” (Brown and Davis, 2006).

In this work a human-robot system is described as a system with two detectors
corresponding to research by (Bechar, 2006). The performance of the first detector (robot) is
determined by its sensitivity d’; and its criterion B, (Figure 7). The performance of the second
detector (human) is determined by his sensitivity d’, and two criteria; one for objects already
marked by the robot, Brn, and one for objects unmarked by the robot, B (Figure 8).
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Figure 7: Modified SDT model for the robot
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Figure 8: Modified SDT model for both human and robot

The symbols of signal detection theory that will be used in this work:

us,N — signal/noise mean
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osn — Signal/noise standard deviation

Zs — the distance in standard deviation units between x and us (along coordinate Z). Zs is positive
X-Ug

Og

where x is bigger than us and negative where x is smaller than ps. Zg=

Zy — the distance in standard deviation units between x and uy (along coordinate Z). Zy is positive
XKy

Oy

where x is bigger than py and negative where x is smaller than py. Z, =

Ps — probability that an object is a signal (target)

.
NI

e

Fs(Zs) — the signal density function value at Zs. fs(Zg)=

@D
. )

Fn(Zn) — the noise density function value at Zy. f\ (Z )=

S

d' — the distance between ugs and uy on X coordinate. d':us-uN

f.(Z
B - the likelihood ratio of the two distributions at the cutoff point x (criterion). = ; > EZS ))
N N
« « 1-P. V-V,
B" - optimal B for one detector case. B =—>x—F—FA (Swet et al., 2000)
P, V,-Vyu

Values extracted from Bechar et al. (2006):

1 5%
Pu — the probability of a miss. P, (Zs)= _[ s(2)z= \/EieZdZ

Zs

Pw — the probability of a hit. P, (Zs)=1 j s (Z)z=1-——

zs 2
\/_ [e?dz=1-P,
Zy 7?

Pcr — the probability of correct rejection. Py (Zy)= I N (2)Z= 2dz

e

Zy 7y 22
Pra — the probability of a false alarm. P, (Z,)=1- .[ N (Z)Z= 1L I e 2dZ=1-P.,

N

Vcr — value of each correct rejection, positive values.

Vea — value of each false alarm, negative values.
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Vy — value of each hit, positive values.
V\ — value of each miss, negative values.

- V,
Var — payoff ratio. V ,q :_%

H

2.4 Filtering and Control

“When designing models for the signal and noise (targets and non targets) processing
and applying SDT, it is possible, at least in principle, to design a filter that optimally
enhances the signal relative to the noise” (Goodwin et al., 2001). A great deal is known about
filter design procedures in simple cases, for example when the signal model is linear
(Goodwin et al., 2001). When the signal and noise models are not completely specified, it
seems plausible that appropriate models could be estimated by analyzing actual data. This is
frequently done in practice by adaptive filters, especially when the models are ill defined or
time varying (Goodwin et al., 2001). “Prediction is concerned with the problem of
extrapolating a given time series into the future” (Goodwin et al., 2001). There is a vast array
of design techniques for generating control strategies when the model of the system is known.
When the model is unknown, on-line parameter estimation could be combined with on-line
control. This leads to adaptive or self-learning controllers (Goodwin et al., 2001). “Control is
concerned with the manipulation of the inputs to a system so that the outputs achieve certain
specified objectives” (Goodwin et al., 2001).

According to Dorf (1989) the design and analysis of control systems is based on
mathematical models of complex physical systems. The mathematical models, which follow
from the physical laws of the process, are generally highly coupled nonlinear differential
equations:

e Deterministic control (when there are no disturbances and the system model is
known).

e Stochastic control (when there are disturbances and models are available for
the system and disturbances).

e Adaptive control (when there may be disturbances and the models are not
completely specified).
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2.5 Previous work on collaboration levels in target recognition tasks

Based on Sheridan’s scale of “action selection and automation of decision” (Table 1),
Bechar et al. (2006), defined, tested and evaluated four basic levels for Human-Robot
collaboration. The collaboration levels were designed specifically for target recognition tasks
and adjusted to an extensive range of automation, from manual to fully autonomous. First is
H, were the human operator detects and marks the desired target solely. This level is
compatible to level 1 on Sheridan’s scale. Second is HR, where the human marks targets,
aided by recommendations from an automatic detection algorithm, i.e., the targets are
automatically marked by a robot detection algorithm, the human acknowledges the robot’s
correct detections, ignores the false detections and marks the targets missed by the robot. This
level is compatible to levels 3-4 on Sheridan’s scale. The third level HOR, where targets are
identified automatically by the robot’s detection algorithm and the human's assignment is to
cancel the false detections and mark the targets missed by the robot system, compatible with
levels 5-7 on Sheridan’s scale. The fourth level is R where the targets are marked
automatically by the robot, compatible to level 10 on Sheridan’s scale. The system objective
function is designed to enable determination of the expected value of task performance, given

the parameters of the system, the task, and the environment (Bechar et al., 2006).

25.1 Summary of Bechar’s work (2006)

An objective function for target recognition in human-robot systems was developed to
allow computation of the expected value of system performance given the parameters of the
human, robot, environment and task. The objective function quantifies the multitude of
influencing parameters through a weighted sum of performance measures, and enables the
prediction of system performance and the desirable level of collaborations. It includes
operational and time costs, both of which are important in the evaluation and optimization of
system performance. It can also be applied to help design optimal systems for specific tasks.

The goal is to maximize the objective function. The system objective function in a
target detection task (Vs) is composed of the four responses of the detection process and the
system operational costs and can be defined as:

V|s :VHs +VMs +VFA5 +VCRs +VTs ()

where Vs (equation 2) is the system gain for target detection (hit), Veas (equation 4)

is the system penalty for false alarms (FA), Vs (equation 3) is the system penalty for missing

the target (miss), Vcrs (equation 5) is the system gain for correct rejection, and Vs (equation
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6) is the system operation cost. All gain, penalty and cost values mentioned above have the
same units (i.e., a common monetary value such as US dollar) combined in a single objective
function. The gain function for detecting the targets is:

Vi, =NXPsxp XV, 2

where,

N is the number of objects,

Ps is the probability of an object becoming a target,

V4 is the gain from a single hit, where the units of VH are 'monetary value'. The value
of VH is target dependent (e.g., the price of one melon for the farmer).

PHs IS the system probability for a hit, composed of the human probability to confirm a
robot hit and the probability to detect a target that the robot did not detect and that neither
marked as a false alarm:

Pris =Pe XPr * (1P ) Do

Pr IS the robot probability of a hit,

Prrh 1S the human probability of confirming a robot hit, and

pun 1S the human probability of detecting a target which the robot did not detect.

The penalty of missed targets is shown in equation 3:

VMs:NXPSXpMsxVI\/I :NXPsx(l'pHs)XVM (3)
where,

Vv is the penalty of a single miss where the units of VM are 'monetary value'. The
value of Vy, is target dependent (e.g., the damage created from not detecting one landmine
can be the destruction of one vehicle).

pwms 1S the probability of a system miss, composed of the human probability to not
confirm a robot hit and the probability to miss a target that the robot did not detect and that

neither marked as a FA:
P =P X (L-Prn ) + (1P )X (11 )
The penalty from false alarms is specified in equation 4:
Veas =FeasXVea 4)

where
Vea Is the damage from a single false alarm, where the units of Vea are 'monetary

value'. The value of Vga is system, environment and non-target object dependant (e.g. the

20



damage created by one non-target object to the machine or system, if the system will detect

and pick a rock instead of a melon it could damage the robot or system mechanism).

that

Fras 1s the number of system false alarm objects, composed of the robot’s false alarms

the human does not correct and the human false alarm:

Feas :Nx(l'PS)x[pFArprAm + (1_pFAr )prAh :|

value'.

Prar IS the robot false alarm probability,
Prarh IS the human probability of not correcting the robot false alarm, and
Pran is the human false alarm probability.
The gain from correct rejection is specified in equation 5:
VCRs :FCRS >(\/CR (5)
where

Vcr is the gain from a single correct rejection, where the units of VCR are 'monetary

Fcrs 1S the correct rejection density function for the system, composed of the robot

correct rejections that the human does correct and the human correct rejection marks:

F

S (1'Ps )x I:pFArx (1'pFArh ) + (1'pFAr )x (1_pFAh )]

The system operational cost includes both costs of time and operation as illustrated in

equation 6:

Vi StoxV, +(NXPyxp, +F )XV ©)
where,
ts is the system time that is required to perform the task,
Vt is the cost of one time unit and its units are ‘'monetary value/time’, and

V¢ is the cost of one object recognition operation (hit or false alarm) and its units are

'monetary/operations’. The cost values can be determined according to the time costs of the

workers and the system and system operational costs and maintenance. The value of V¢ is

equal for hit and false alarms since it required the same treatment and manipulation for both.

Bechar (2006) assumed that the picking times are shorter than the sum of detection

times and technical times related to the detection process. Therefore, the time terms in the

objective function express only the detection times and do not consider the related

operational time (picking times).

The system time consists of the time for the human to confirm the robot hits, the time

for the human to hit additional targets, the time for the human to correct the robot false
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alarms, the time for the human to mark false alarms, and the robot time to process the images
and to perform hits or false alarms. Also included in t is the time it takes the human to decide

whether an object has been correctly rejected (CR) or missed (M).

t=NXPXp,, XP i Xty +N><PS><(1-pHr )Xth Xt +

+N><(1-PS )XpFArprArhxtFArh +N><(1-PS )><(1-pFAr )XpFAhXtFAh +
+NXPXP,, X (1P ) ¥ty FNXPX (1P, )% (1P, ) Xty +

+NX (1P ) XPea X (1-Peam ) Xt g NX(1-Ps )X (1-Penr )X (1-Pran ) ¥tern *,

where,

(7

turn 1S the human time required to confirm a robot hit,

tun IS the human time required to hit a target which the robot did not hit,

trarm 1S the human time needed to correct a robot false alarm,

tran IS the human false alarm time,

tmrn 1S the human time lost when a robot hit is missed,

twmn 1S the human time invested when missing a target which the robot did not hit,

tcren IS the human time to correctly reject a robot false alarm,

tcrn IS the HO correct rejection time, and

t, is the robot time.

Bechar (2006) assumed that each of the human time variables represents a
superposition of a decision time, tp, and a motoric time, ty, in accordance with the
collaboration level.

Explicit operation of the system objective function Vs, that is suitable for all

collaboration levels is described in equation 8:

®)

Vi =NXPX] P XD X (Vi # Ve Hn XV, )+ (1P )P % (Vi Ve 4 XV, ) [+
+NxPSx[per(1-pHrh )X (Vi Htan XV, )+ (10,5 )% (1P )% (Vg Hpn XV, )] +

+Nx (1-Pg )x[pFArprArhx(VFA Vg Hppn XV, )+ (L-Pra ) XPean X (Vea +Ve Hppn XV, )]

N (1P )X P (1P ) * (Vor Homn Vi) + (1-Pea )X (1Pemn )X (Vor Horn Vi) [ +14V,

For the H collaboration level the objective function will be a degenerate form of

equation 9, excluding the robot variables and therefore results in:
Vls :NXPSX[th X (VH +Vc +tHh xvt ) + (1'th )X(VM +ch th ):' +

9
+Nx (1'Ps ) xl:pFAh X (VFA Ve Hean XV, ) + (1'pFAh )x (VCR Hern XV, )]
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In the R collaboration level the system objective function, VIs will be a degenerate
form of equation 10 excluding the human variables:
(10)
Vi ENXPX[ X (Vi #Ve )+ (1P, )XV | HNX (1P )X [ PeaX(Vea +Ve )+ (1P ) XVer | #EXV,
The time parameters for the H, HR, and HOR collaborations are shown in equations
11, 12, and 13, respectively.
t, =ty +t,

Lean =tp Hy

(11

=t
CRh ~'D (12)

=t
CRh ~'D (13)

A methodology for determining the best collaboration level based on the human,
robot, task, and environmental variables was developed by Bechar (2006). Numerical
analysis of the developed objective function combined with signal detection theory was
applied for the defined collaboration levels, and a sensitivity analysis of the influencing
variables was performed on the optimum values (Bechar, 2006). These developments provide
the basis for adjusting the combined human-robot system to each task and environment and

aid in effective system design.
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The main conclusions from Bechar’s (2006) work are:

Numerical analysis results indicated that the best system performance, the optimal
performance measures values, and the best collaboration level depend on task, environment,
human, and robot parameters as well as the system characteristics. Since the number of
independent parameters is vast and, in addition, there are interactions between the
parameters, a prediction of system performance and the optimal solution is comprehensive
and not obvious. However, it can be determined by investigating the objective function. The
findings indicate that for the tested cases H is never the best collaboration level for the
optimal solution, probably due to its high operational cost and low hit rate relative to the
other collaboration levels. Thus, collaboration of human and robot in target recognition tasks
will always improve the optimal performance of a single human detector. In addition, for the
optimal solution of the objective function including operational costs, the best collaboration
level is R when robot sensitivity is higher than human sensitivity. Moreover, the overall
system sensitivity never decreases beneath the robot sensitivity.

The sensitivity analyses illustrated the influence of small variations, in the human and
robot optimal values and in the environmental parameters, on the objective function and on
the best collaboration level. Results indicated that small changes in the optimal values can
cause shifts in the best collaboration levels from one to another but the shift is always to an
adjacent level. A sensitivity analysis of the environmental target probability parameter
showed that small changes in the optimal value can shift the best collaboration level from one
to another and in some cases that shift leads directly to H. This finding can be exploited for
the design and operation of integrated human-robot systems under dynamic and realistic
conditions where the true value of the parameters is unknown and the resolution and accuracy
are low, or in cases where the parameters are dynamic and drifting around their expected
values.

Experimental results indicated that although the participants’ performances were not
optimal, they significantly reacted to the different robot, task and environmental parameters,
and their results are consistent with the results of the numerical analysis of the objective
function excluding the operational cost. Due to the unknown number of total objects, targets
and non-targets, only part of the human and robot performance measures and the

environmental parameters could be evaluated and compared to the numerical analysis.
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2.5.2  Summary of Oren’s work (2007)

A numerical analysis of the global system objective function with all its parts was
conducted in the work of Oren (2007). The analysis determined the optimal collaboration
level and the objective function score for a given human sensitivity, robot sensitivity, target
probability and different ratios between the objective function weights. All analyses were
performed for systems which work with optimal criterions.

Figure 9: Objective function score for different human and robot sensitivities of the four collaboration levels for
Ps=0.2. H - blue, HR - cyan, HOR yellow and R - red.

The Figure below presents the collaboration level required to achieve the best system
performance.

0%5

Figure 10: Best collaboration level map for different human and robot sensitivities. The colors represent different
collaboration levels: HR — cyan, HOR - yellow and R — red.
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The main conclusions from Oren’s (2007) work are:

Numerical analysis exposed two different behavior types; each type consisting of
different systems. For all of the systems examined, an increase in the human and/or robot’s
sensitivity led to an increase in the objective function score. This results from the fact that
better sensitivity means better discrimination ability between target and noise (no target);
despite the different weights given to the target function. Better sensitivity leads to more hits
and less false alarms and thus regardless of the system’s type or method of reward or penalty
the objective function score rises. In addition, level H, the human operating alone, was not
found to be preferable in any of the systems examined; this may be the result of high
operational costs and a relatively low detection rate. The meaning of this finding is that
collaboration between human and robot in target recognition tasks will always improve the
system’s performance. It appears that the improvement in detection rate and hence rise in
profits gained by this collaboration outweigh the rise in operational cost attributable to adding
the robot to the system.

The results showed opposite tendencies between the two types of systems found. In
type one system as target probability increased R level was preferable in more cases, and as a
result collaboration levels were less preferable. In type two systems the trend was reversed:
as target probability increased collaboration levels were preferable in more cases. Type one
systems greatly value not committing errors; that is to say, they place high importance on
results in situations were no target is present, or target probability is low. In turn, type two
systems greatly value results in which a target is present. Even though very different
tendencies were discovered by the function analysis, several important similarities found
between them should be pointed out: First, in both systems as the probability of the
prominent object (non target in system one and target in system two) increases, R level will
be preferable in more cases. In turn, as the probability of the prominent object decreases,
collaboration between human and robot is preferable. It can be assumed that this trend stems
from the reciprocation between operational costs and recognition profits.

Sensitivity analysis of the betas indicated that while R level was only found to be
affected by the position of B, the two collaboration levels, HR and HOR, were found to be
affected by all the three betas. This analysis has revealed that in many cases, a small
deviation from the optimal value required the system to switch to another operational level in

order to stay at an optimum.
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3 Methodology

3.1 Problem objective

This research aims to develop a methodology for dynamic switching between
collaboration levels of human-robot systems to maintain maximum system performance

despite deviations in the parameter values during task performance.

3.2 Overview

This thesis includes the following developments:
e A decision model for the dynamic switching execution.
e A closed-loop paradigm of the human — robot system based on the decision
model.
e A rule-based algorithm to switch between collaboration levels based on
human, robot, task, and environmental parameters for
o Immediate response time.
o Unknown response time of the system.
o Restriction of minimal time for switching.
e A tool to implement the rule-based algorithm and model and simulate its
performance.
e A comprehensive numerical analysis of the results.
In addition this research will answer some major questions concerning shifting
between collaboration levels in dynamic human-robot systems:
1. Who decides on the shift, human, robot, or is it a collaborative decision?
2. How many levels can be switched at one time?
3. What parameters should be considered in the switch?
4

. What should the frequencies of the switches be?

3.3 Human-robot system definition

In this research we investigate an integrated human-robot system for target
recognition tasks based on work developed by Bechar (2006). Definitions are according to
Bechar (2006). The term 'system' is defined to represent both the 'human operator', 'robot’ and
‘controller’ subsystems and includes their overall combined performances and parameters.

The ‘human operator’ subsystem is defined by the displays at which the human perceives
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information and by control devices which are used for manual operations; the ‘robot’
subsystem comprises the autonomous operations defined by automatic programs residing in
the robot controller (Figure 12). The phrases 'human operator' and 'robot' refer to the
subsystems and to their specific performances and parameters. The phrase ‘environment'
refers to the surrounding conditions the 'system' operates in. It includes parameters such as
target probability, number of objects, and other parameters that are not related to the 'system'.
The system inputs are the parameters d’, B and Ps. These parameters can vary over time, thus
affecting the system performance dynamically. The criterion, B, is assigned to an optimal
value during system performance by comparing the different likelihood ratios. The
parameters can be classified into three subgroups that include the human operator, robot and

environment (Table 4).

Table 4: Performance parameters (Bechar, 2006)

Human performance | robot performance | environment performance

th P51 d'ra d'h pHr PS, dlr PS1 N

pHrh

PrAn Prar

Prarh

tHh tr

tHrh

trAn

trar

twvn

tMrh

tcrn

tcrrh

The system is defined as serial; each object is at first analyzed by the robot and then
by the human operator. Nevertheless, the robot analysis is exposed to the human operator. In
some cases the human response and the system outcome, or the system outcome by itself, can
influence the robot threshold (Bechar et al., 2006).

The switching system was designed in this work so the robot can switch between
collaboration levels, if it decides that the state is not optimal at some level. The human
operator can view the displays (represented by “Displays” block in Figure 12) showing the
system’s performance, and according to the current system’s collaboration level he/she can
participate in target classification through control devices. The human operator can also
decide whether to intervene to the current work state in any collaboration level if he/she

thinks that the system’s state is not satisfactory.
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The system is described as a closed-loop system (which is characterized by presence
of feedback) because it must receive feedback of the current state of collaboration level

which may vary over time.

3.4 Controller design

The purpose of the controller is to automatically switch between collaboration levels
of the system to maintain high system performance during the target recognition task. The
design of this controller is based on classical control methods for dynamic systems. The
system should accumulate an optimal objective function score over time. Control theory was
employed for that purpose. A controller manipulates the inputs to the system to obtain the
desired effect on the output of the system. The controller manipulates a collaboration level

(i.e., performs switching) to allow the process to obtain the desired reference.

t
r(t) —»Q—» Controller u®, Process > (1)

Figure 11: Block diagram of a closed loop control method.

Where r(t) is the input, i.e., desired reference (optimal objective function score), y(t)
is the output, i.e., reference (current objective function score), u(t) is the input to the process
which is optimal collaboration level OCL (output from the controller). The controller decides
on the collaboration levels and makes a collaboration level switch if necessary, to provide the
optimal collaboration level as a reference to the process. Therefore, u(t) provides the optimal
collaboration level (as calculated by the controller) to the robot controller. The process stands
for a target recognition process at a collaboration level provided by the controller.

The system block diagram is presented in Figure 12 including the controller and the
robot with the human operator defined as a process of the target recognition system where

each object is first analyzed by the robot and then by the human operator.

System
" Robot Human Operator
| ____________________ A
Human |
u(t | . t
B— Controller UM, Robot tel Displays- —» Monitor/ | SOl Ll popor Y ),
Controller Devices | |
Ps | Controller
L i
cc,y (0 -_——""" " "

Figure 12: System’s block diagram.
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The controller is designed as a logical controller which receives four inputs: d’, B, Ps
and the current collaboration level (CCL). Different algorithms were developed for the
operation of this controller as detailed in section 5.2.

The basic logic for the control process is as follows: the controller obtains the
optimal collaboration level from the inputs (which is the reference input r(t)) by calculating
the objective function (developed by Bechar, 2006) score for each collaboration level and
compares it to the current collaboration level of the system. If the score of the optimal
collaboration level (OCL) is not equal to the score of the current collaboration level (CCL)
the controller makes a switch to the optimal collaboration level and provides a manipulated
input to the process — u(t). The system has four possible collaboration levels (H, HR, HOR

and R), while each collaboration level has system objective function score.

3.5 Dynamic switching methodology

The decision concerning the shift could be done by the human operator, the robot and
the controller. Table 5 illustrates the switching decisions of the human operator and the
robot. By default the human operator is given the higher priority for the switch. This will
allow him to make corrections in case of some failures in the system’s performance or in the
robot or if he decides that the current performance is not satisfactory. In such a case the
human operator can switch the collaboration level. The robot can decide to make a switch in
collaboration level when it senses that system’s state is unacceptable (performance too low
for a period of time, some sensors suffer from malfunctioning, failure in the controller, etc.).
The controller makes dynamic switching of the collaboration levels according to the
switching algorithms in order to maintain adequate system performance. Thus, the switching
operation is classified in three layers: the control layer, the robot layer and the operator layer.
The upper layer is given an ability to by-pass the layer/layers beneath it (Figure 13). This
grants also the ability to avoid system failure due to malfunctioning in one of the layers
(robot or operator). The summary of the priorities and the decisions regarding the switching
is presented in Table 5.

Switching to any level from any level will be enabled in the designed controller in
order not to constrain the system, and make it more flexible to deal with changes of the
environment and the parameters. Each change has an associated cost, depending on the jump

in collaboration level, due to the response time required to perform this operation.
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Table 5: Switching decisions.

i level switch

Priority | Decision type
Human operator 1 Human decides the system state is not satisfactory
Robot 2 Robot decides the state is sufficiently abnormal
Controller 3 According to switching algorithm
1 Human Collaboration |
operator level switch |
Collaboration |
2 Robot level switch |
3 Controller Collaboration !
level switch !
System
, Robot Human Operator
‘ 1T fuman | [ coma | ‘.
R u(t} | Robot I . ! Control y(t)
ﬁ*?@ = Controller > Controller [ Displays: —» Monitor/ s "0 Jr> Robot >
Ps i | Controller
I Collaboration | i Collaboration ¢ ) | _i Collaboration | _ _ _ _ _ _ |
CCL — : i level switch | —

Figure 13: System’s block diagram with collaboration switching priorities. In the upper part presented taxonomy of
the switching layers and below illustration of blocks of collaboration level switch for each layer.

3.6 Assumptions

e Human performance has no influence on robot performance (Bechar, 2006).

e The human, robot, and system performances do not influence the appearance of target

and non-target objects (Bechar, 2006).

e Target marking is done after each image sample without the ability to return to

previous samples.

e A new image is sampled after a classification of a previous one (real-time work

assumption).

¢ Noise and signal have the same distributions.

e System inputs can be obtained and given to the system prior to each image sample.

3.7 Switching objective function

The switching objective function is designed to enable determination of the expected

value of the switching operation done by the controller, given the parameters of the system,

the task, and the environment. The switching objective function parameters can be divided

into three major categories — gain from system objective function, system’s response time and

switching frequency.
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3.8 Switching algorithms

The dynamic switching algorithms are designed to switch the system to the best
collaboration level by calculating the best objective function score with the current human,
robot, environment and task parameters. Four different algorithms were developed for this
purpose. The algorithms took into consideration the systems’ response time, the changes of

the system parameters due to this response time and limitation on the switching frequency.

3.9 Numerical Analysis

Numerical computations were performed on a PC with Matlab 7™ (The Mathworks,
2006) to simulate and evaluate the developed switching algorithms. The PC platform was
Pentium Centrino 1.6GHz with 512mb of RAM.
The numerical computations were executed for several target probability distributions, Ps:

Linear distribution.

Uniformly distributed random values.

Normalized distribution of random values.

Normalized distributed of random values sorted by ascending order.

el

For each distribution, all the algorithms were simulated and compared by their results
of increasing the objective function score. The simulation was performed for four different
starting collaboration levels.

The values of the different parameters of the simulation were extracted from a
preliminary experiment performed by Bechar et al. (2006). The value of hit weight, Vy, was
set to 10, the cost of a single miss,V, was set to 5, the benefit of correct rejection, Vg, was
set to 3 and the damage from false alarm, Vea, was set to -50. The probability for target, Ps,
ranged from 0.1 to 0.9. The human sensitivity, d’y, and the robot sensitivity, d’,, were set
arbitrary to examine the influence of different Ps distributions. The operational cost weights
were constant where the cost for one system action was set to V¢=-2 and the cost for one time
unit was set to V;=-2000 hr’*. The number of objects in each image was set to N= 1000. The
decision time for all human time parameters was set to tp=5 sec/object, and the human
motoric time was set to ty=2 sec/(detected object). The robot time was set to t=0.01
sec/object on average. The system’s response time and the frequency were set t0 tresponse=5
sec and ¥=1-10"° sec, to comply with the CPU frequency during the simulation (in order to
simulate the real image sampling process). The V, value was set to -5 -10° to constrain the
switching operation. The simulations were also executed for different frequencies and

provided different results; this is discussed further in this work.
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4 Switching objective function

This chapter deals with formulation of a switching objective function of a human-
robot system based on the system objective function and determination of the gain in system
performance value due to the switches.

4.1 Switching objective function formulation

The switching objective function is formulated to quantify the switching operations
and to enable determination of the expected value of the switching operation done by the
controller, given the parameters of the system, the task, and the environment.

For presentation of the terms used in this work for formulation of a dynamic
switching methodology, the following symbols are introduced here:

The switching points are marked by o, . i — is the index of the switching points.

The image sampling points are marked by ¢; i—is the index of the sampling points.

The switching objective function score is marked by Vswitch.

The switching objective function (Vswitch) €valuates the total gain from switching the
system from one collaboration level to another. This gain is calculated as the difference
between the system objective function® score in optimal collaboration (Visoptimar) leVel and the

objective function score in current collaboration level (Vscurrent)-

V, (14)

L=V

Switch ISoptimal 1Scurrent

To find the optimal collaboration level, the total objective function score was
calculated for all collaboration levels. The optimal collaboration level is the level that
achieves a maximal score in the objective function (equation 15).

H if VIS(H):MaX{VIS (H),V,s(HOR), Vg (HR),V,S(R)}
HOR if V,s(HOR)=Max {V|s(H)vV|s (HOR),V(HR),V, (R)}

OCL= ) (15)
HR if Vls(HR)Zl\/laX{Vls(H),V,S(HOR),V,S(HR),Vls(R)}
R if Vis (R):MaX{V,S (H),V,s(HOR),Vg (HR),V,S(R)}
Vis  =Vjg(OCL) (16)

optimal

! The system objective function (function 1) was developed by Bechar (2006).
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The current collaboration level is described as the level that the system is currently
working at (i.e., the level at which the system was before switching). CCL can be determined
by sampling the system at a desired time - tnow (equation 17).

CCL={HHORHR,R 17

}‘tnow

V,

IScurrent

=V, (CCL) (18)

where (from Bechar et al., 2006),

a) H: The H detects and marks the desired target solely.

b) HR: The H marks targets, aided by recommendations from an automatic detection
algorithm, i.e., the targets are automatically marked by a robot detection
algorithm, the human acknowledges the robot’s correct detections, ignores false
detections and marks targets missed by the robot.

c) HOR: targets are identified automatically by the robot’s detection algorithm; the
human's assignment is to unmark false detections and to mark the targets missed
by the robot system.

d) R: the targets are marked automatically by the system.

At the switching point, the penalty for the response time of the system (both human
and robot) for making the switch of collaboration level must be considered. This indicates
whether the penalty for the system’s response time is not greater than the benefit from
switching operation. Therefore, a correction to the switching objective function was made in
equation 19.

Vi =(Vis

Switch

VlS )+t response ><\/t (19)

optimal current

V¢ is the cost of one time unit and its units are 'monetary value/time' (extracted from
objective function).
The response time of the system consists of human operator response time and robot’s

response time (equation 20).

Lresponse =t response L response (20)
Where,
)t eqonse - TiMe required for the robot to switch between collaboration levels.
b) t, reponse - TIMe required for the human to identify and adapt to switching.
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The human operator consumes a different amount of time adapting to switching of

different number of collaboration levels, therefore:

t =t (21)

h_response — “h_x|,—q 23

Where,
a) t,, - Time required for the human to adapt to switching to a nearest collaboration

level.

b) t,, - Time required for the human to adapt to jumping of two collaboration levels.

) t,, -Time required for the human to adapt to jumping of three collaboration levels.

This was introduced in the literature review, which indicated that humans have built-
in time lags and limited bandwidths and are poor at anticipating future system states; in
addition, control order, preview, and time lags influence tracking performance (Wickens,
1984).

A limit on the switching frequency is introduced to enable proper functionality of the
human operator in case of constant switching. Elkind and Sprague (1960) define this
frequency as a bandwidth with which corrective decisions can be made by human operator
with values between 0.5 and 1.0 Hz. This leads to formulation of switching points (equation
22):

(0. 7@ )+ (22)

Where,

a) o, - Switch point indexed k.

b) 1- Time between switches.

The nominal time between switches defined by the switching frequency is marked

by v
The updated switching objective function that includes switching frequency (equation 23) is:
= B + xV +¥x
VISWitCh (VISOptimaI VISCUI’rent) tresponse Vt b4 Vp (23)
- if 1<
P Y-T T \|] o8
0 otherwise
Where,
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a) 'V, - Penalty for switching earlier than the nominal value of switching frequency.

b) - The nominal time between switching operations.

C) Y- The deviation value from switching frequency.

Formulation of the gain from switching is described as follow:

n

622 VISwitch ((D') ’ 0<n<m (25)
i=0

G(Qk ):Vlscurrent (gk )-VISrefference (gk )+VISWitch (gk )

V,  (w,) ifkis switch point (26)
VI . (gk): Switch
Switch otherwise
f=> 550 (27)
k=1
F(S):MaX{E}{Za(gk)} ,S€S (28)
k=1

Where,

a) & - Sum of switching objective functions at switching points - gross switching gain.

b) n- Total number of switches.

C) o - Gain in the objective function score achieved by each system’s operation (image
sampling) compared to a particular collaboration level that used as a reference.

d) m — Total number of image samples.
€) G - Image sample indexed k.
) Vs

reference.

- Objective function score of particular collaboration level that used as a

refference

g) f- Cumulative gain of the entire operation of the system — net switching gain.
h) F(s) — Fitness function of the model.

i) S - Solution space for F.

J) s—Possible solution for F.
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5 Switching algorithms

This chapter presents the design of a controller for the human-robot system and the

four switching algorithms developed for the controlled dynamic switching operation.

5.1 Basic switching algorithm for immidiate response time of the system

The controller obtains the optimal collaboration level by calculating and comparing
objective function scores for all collaboration levels. The controller compares the optimal
collaboration level to the current collaboration level of the system. If the optimal
collaboration level (OCL) is not equal to the current collaboration level (CCL) then the
controller makes a switch to the optimal collaboration level. The algorithm is described in
pseudocode in Figure 14 and in Table A-7 in Appendix III.

d

Calculate N Update Make the
p Input = " e y OCL @ Now el [ switch | 7] Outeut

Ps Yes

Figure 14: Basic switching algorithm for immidiate response time of the system
5.2 Switching algorithms formulation

The following four algorithms were developed for the control layer:

“RLSA” - regular switch algorithm, “CTSA” - constrained switch algorithm, “CFSA”
- constrained without frequency limitation switch algorithm and “PRSA” - predictive switch
algorithm.

These algorithms perform under the limitation of the switching execution frequency,
which does not allow making switches too frequently. The four algorithms differ by their set
of conditions for making the switch of the collaboration level. Algorithm “RLSA” makes a
switch whenever the switching objective function gain (Viswich) @s formulated in equation 19
is positive. Algorithm “CTSA” makes switches whenever Visich Value is higher than a
desired threshold. Algorithm “CFSA” also makes switches whenever Viwch Value is higher
than a desired threshold like “CTSA” algorithm but with no limitation of the switching
execution frequency, which became possible due to definition of a penalty for breaking the

frequency (equation 23). Algorithm “PRSA” makes switches by including predictions from
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past data to operation of “CFSA” algorithm. It switches the system to the optimal
collaboration level only when this collaboration level was optimal in most image samples
analyzed by the system.

A logic model block diagram was built to represent the switching methodologies for
all the algorithms (Figure 15). For example, if the current collaboration level is not optimal
and the gain from the switch would be above desired threshold then “CTSA” algorithm

should make a switch. The values in brackets are shortening names for each block.
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If OCL is H and CCL is HOR
and GlisPand GlisAand G2isAand Tis
G and N is M Then “PRSA”

IfOCLisRand CCLis H
and GlisNandGlisAand G2isAand Tis
G and N is M Then “RLSA”

If OCL is HR CCL is HR
and GlisNandGlisAand G2isAand Tis
G and N is M Then “RLSA”

IfOCLisHCCLisH
and GlisPandGlisAand G2is Aand T is
G and N is M Then “RLSA’

If OCL is HR and CCL is HOR
and GlisPand GlisAand G2isAand T is
G and N is S Then “CFSA”

If OCLis HR and CCL R
and GlisPand GlisAand G2isBand Tis
G and N is S Then “CTSA”

If OCL is HOR and CCL is HR

‘, and GlisPand GlisBand G2isBand T is

G and N is S Then “CTSA”

If OCL is R and CCL is HOR
and GlisPand GlisAand G2isAand Tis
L and Nis S Then “CFSA”

If OCL is HR and CCL is H

pz and Glis P and Glis Aand G2is Aand T is

L and N is M Then “PRSA”

Other rules...

defuzzifier

—

algorithm

Optimal H
HR
CL HOR
(OCL) R
Current H
HR
CL HOR
(CCL) R
. I g
Gain after ‘\\"
response N )‘\‘“‘
. Positive (P) e
time Negative (N) ‘ y
penalty “"'l
(G1) i
>
Gain after ‘é’ ,‘
response Above threshold (A) m\
time Below threshold (B) I
penalty , '
(G1) ’,.
i
Gain after i
response
time and Above threshold (A)
switching Below threshold (B)
penalty
(G2)
Time
differnce Greater than t minimal (G)
between Lesser than t minimal (L)
switches
(T)
Number
Major (M)
Qf OCL Sml S)
Since last
switch
(NR)

Figure 15: Block diagram of the control system algorithms
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5.3 “RLSA” algorithm

The controller receives four inputs: d’, B, Ps and the current collaboration level. The
controller obtains the optimal collaboration level by calculating and comparing objective
function scores for all collaboration levels. It compares the obtained level to the current
collaboration level of the system. Switching to the optimal collaboration level is conducted
based on three conditions:

e |If the optimal collaboration level (OCL) is not equal to the current
collaboration level (CCL) and,
e If the gain achieved by switching as formulated in equation 19 is positive and,
If the time difference between switches (1) is greater than the nominal time
between switches (V)

The time difference between switches (1) is updated in order to calculate the new
time difference for the following switches. If the controller’s conditions are not met then an
output stating “Collaboration level not optimal” is placed on the displays (illustrated in
Appendix 1) and the human operator has an ability to intervene and change the collaboration
level manually if he/she decides so. The algorithm is described in pseudocode in Figure 16
and in Table A-5 in Appendix IlI.

5.4 “CTSA” algorithm

The controller receives four inputs: d’, B, Ps and the current collaboration level. The
controller obtains the optimal collaboration level by calculating and comparing objective
function scores for all collaboration levels. It compares the obtained level to the current
collaboration level of the system. Switching to the optimal collaboration level is conducted
based on three conditions:

e |If the optimal collaboration level (OCL) is not equal to the current
collaboration level (CCL) and,
e If the gain achieved by switching as formulated in equation 19 is above
desired threshold and,
If the time difference between switches () is greater than the nominal time
between switches (V)

The time difference between switches (1) is updated in order to calculate the new

time difference for the following switches. If the controller’s conditions are not met then an

output stating “Collaboration level not optimal” is placed on the displays (illustrated in
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Appendix 1) and the human operator has an ability to intervene and change the collaboration
level manually if he/she decides so. The algorithm is described in pseudocode in Figure 17
and in Table A-6 in Appendix IlI.

5.5 “CFSA” algorithm

The controller receives four inputs: d’, B, Ps and the current collaboration level. The
controller obtains the optimal collaboration level by calculating and comparing objective
function scores for all collaboration levels. It compares the obtained level to the current
collaboration level of the system. Switching to the optimal collaboration level is conducted
based on three conditions:

e |If the optimal collaboration level (OCL) is not equal to the current
collaboration level (CCL) and,

e |f the gain achieved by switching as formulated in equation 23 is above
desired threshold

The time difference between switches (1) is updated in order to calculate the new
time difference for the following switches. If the controller’s conditions are not met then an
output stating “Collaboration level not optimal” is placed on the displays (illustrated in
Appendix 1) and the human operator has an ability to intervene and change the collaboration
level manually if he/she decides so. The algorithm is described in pseudocode in Figure 18
and in Table A-7 in Appendix IlI.

5.6 “PRSA” algorithm

The controller receives four inputs: d’, B, Ps and the current collaboration level. The
controller obtains the optimal collaboration level by calculating and comparing objective
function scores for all collaboration levels. It compares the obtained level to the current
collaboration level of the system. Switching to the optimal collaboration level is conducted
based on three conditions:

e If the optimal collaboration level (OCL) is not equal to the current
collaboration level (CCL) and,

e If the gain achieved by switching as formulated in equation 23 is positive or
time difference between switches (1) is greater than the nominal time between

switches (V) and,
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. [|fthereis a majority of optimal collaboration levels of the same type since the
last switch

The time difference between switches (1) is updated in order to calculate the new
time difference for the following switches. If the controller’s conditions are not met then an
output stating “Collaboration level not optimal” is placed on the displays (illustrated in
Appendix 1) and the human operator has an ability to intervene and change the collaboration
level manually if he/she decides so. The algorithm is described in pseudocode in Figure 19

and in Table A-8 in Appendix IlI.

Every algorithm calculates the gains that were achieved by switching according to
equations 26 and 27.

Table 6: Summary of the terms

Term Meaning

OCL Optimal collaboration level

CCL Current collaboration level

Gl Gain after response time penalty
G2 Gain after response time and switch frequency penalty
T Time difference between switches
NR Number of OCLs since last switch
P Positive

N Negative

A Above threshold

B Below threshold

G Greater than ¥

L Lesser than ¥

M Major

S Small
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Figure 16: Block diagram of “RLSA” algorithm
d
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Figure 17: Block diagram of “CTSA” algorithm
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Figure 18: Block diagram of “CFSA” algorithm
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Figure 19: Block diagram of “PRSA” algorithm
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5.7 Parameters classification

There are several groups of parameters used in the algorithms mentioned above. The
first group is the algorithm’s calculated variables, which are calculated in the computing
process during the task. The second is user defined parameters. These parameters should be
defined by the operator of the system to allow him to customize its performance according to
his needs. The third group is system oriented parameters, which depend on a system, like
system’s response time. These parameters should be determined a priori from the desired

system.

The classification of the parameters:

Algorithm calculated variables: Vis 6,7, O Visoptima, Viseurent, G, N, M, G, f, F

refference ,

User defined parameters: v, B, m, V,

System dependable parameters (system oriented): t t

r_response ! ~h_response ! Vt
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6 Numerical analysis

This chapter presents numerical analysis of the switching algorithms and their

operation, and the analysis of switching points.

6.1 Numerical simulation of switching algorithms

The main goal of these simulations is to check the feasibility of performing automatic
switches between collaboration levels in a dynamic human — robot system. The second aim is
to check the benefit of automatic switching — does switching cause an increase in system
performance and if so, how much does it influence performance?

The designed numerical program simulates the operation of the combined human-
robot system for target recognition tasks and calculates the objective function values for each
operation made by the system. It implements the proposed switching algorithms and
evaluates the Viswich Value for each image sample and the gain achieved according to the
reference as described by each pseudocode. Representative graphs of the simulated results are
presented in Figures 20, 21, 22 and 23 for normally distributed random values of target
probability Ps from 0.1 to 0.9. The figures are divided into three graphs; (a), (b), (c). The
Vswitch @Xis (y axis) in (a) corresponds to the aforementioned developed switching objective
function score which evaluates the gain from switching the system to an optimal
collaboration level according to equation 23. The Vswicch Values on the graph were updated
with each image sample. Figure (b) represents the gain in the objective function score (Vis)
achieved by each system’s operation (image sampling) compared to a particular collaboration
level that was used as a reference according to equation 26. Figure (c) represents the
cumulative gain for the entire operation of the system which is the sum of the gains in the
second graph according to equation 27. The switch points are marked with ‘X’ on the upper
graph. The switch points represent a collaboration level switch at a particular image sample.
An axis with Ps values is illustrated at the bottom of the figures.

The following figures describe the operation of the switching algorithms in a
representative case starting at the HR collaboration level. The starting collaboration level is
used as a reference for calculating the gain achieved by the algorithms. The system objective

function score of the reference is calculated as Vg . The gains achieved by the different

refference

algorithms are calculated relative to objective function score of a system that worked solely

with HR collaboration level in this case. The figures present the dynamic switching operation
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of each algorithm and the gain in objective function score which has been achieved by the
algorithms during the simulation of the target recognition task of the system. The sequence

and the values of Ps for all the algorithms were identical in this simulation execution.
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Figure 20: The cost for non optimal work with switching in normally distributed random values of Ps — algorithm
“RLSA”. (a) represents the dynamic changes in Vqiten Values over time and dynamic switching operation, (b)
represents the gain in objective function score achieved by each system’s operation, (C) represents the cumulative
gain for the entire operation of the system. The switch points are marked with <X,
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Figure 21: The cost for non optimal work with switching in normally distributed random values of Ps — algorithm
“CTSA”. (a) represents the dynamic changes in Vgin Values over time and dynamic switching operation, (b)
represents the gain in objective function score achieved by each system’s operation, (C) represents the cumulative
gain for the entire operation of the system. The switch points are marked with X,
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Figure 22: The cost for non optimal work with switching in normally distributed random values of Ps — algorithm
“CFSA”. (a) represents the dynamic changes in Vyin Values over time and dynamic switching operation, (b)
represents the gain in objective function score achieved by each system’s operation, (c) represents the cumulative
gain for the entire operation of the system. The switch points are marked with <X’.
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Figure 23: The cost for non optimal work with switching in normally distributed random values of Ps — algorithm
“PRSA”. (a) represents the dynamic changes in Vsyicn values over time and dynamic switching operation, (b)
represents the gain in objective function score achieved by each system’s operation, (C) represents the cumulative
gain for the entire operation of the system. The switch points are marked with <X’.
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Figure 20 presents the results of a representative simulation of the “RLSA” algorithm
operation. In this example the system made nine switches in deviations dictated by the
switching frequency which represents the nominal time between switching operations, V.
Due to this limitation we can assume that the image sample rate is much higher than the
switching rate. We can clearly see that many switches were performed for low Vswitch Values
and therefore had a little impact on the systems’ gain. The switching operation of this
algorithm is purely constrained by the switching frequency, which makes it not so effective
for high changing rates of the target probability (in this example). This phenomenon is
illustrated in Figure 20 (b) which often receives negative values, which means that in some
image samples the switching operation decreased the systems’ score. Nevertheless, in this
example the algorithm resulted in improved overall system performance as indicated in
Figure 20 (c). Figure 21 presents the results of a representative simulation of the “CTSA”
algorithm operation. In this case another constrain is introduced by the threshold. The
threshold value was set to 1500 units in this example. This algorithm switches the
collaboration levels only when the Vsitch Value is above the threshold. This results in fewer
switches but on relatively high Vsiicn Values. Nevertheless this algorithm misses some high
valued points for switching due to its constraint by the switching execution frequency. In
Figure 21 (b) we can see fewer negative values and improved overall system performance
compared to “RLSA” algorithm. Figure 22 presents the results of a representative simulation
of the “CFSA” algorithm. This algorithm makes switches whenever Vsich Value is higher
than a desired threshold with no switching frequency limitation except a penalty for breaking
the frequency, according to equation 23. For example, after the ‘switch point’ in the current
Figure there is a drop in Vswitch Value below zero, which indicates the penalty for switching
the system before the amount of time allowed by the switching frequency. When the
switching objective function score becomes positive again then the time window of switching
frequency is over and the controller can make a switch without any penalty. This strategy
ensures switching the system in all high valued points as illustrated in Figure 22 (a), unlike in
the previous algorithms, which eventually results in improved overall system performance.
Figure 23 presents the results of a representative simulation of the “PRSA” algorithm. This
algorithm makes switches by including predictions from past data. The controller switches
the collaboration level to a level that was detected as the best collaboration level in the time
window between the previous switch until the decision making. Therefore this algorithm is
searching for consistency in the optimal collaboration level before making a switch. This

algorithm also uses the strategy of “CFSA” algorithm of breaking the switching frequency by
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paying a sufficient penalty. In Figure 23 (a) we see that only one switch operations were
made, which is the result of the high inconsistency of the optimal collaboration levels in the
time series due high deviations of the Ps values in the presented example. This algorithm has
no negative values on the gain graph and received the best overall system performance score.

The numerical analyses of the proposed algorithms for other target probability
distribution values are presented in Appendix Il. Analysis for changes both in target
probability and human sensitivity values and different frequency and Ps change values are

presented in the Appendix Il.

6.1.1 Summary of the results

Table 7 presents summary of the results of the numerical analysis for 200 independent
simulations of each algorithm. The distributions of the target probability, Ps, simulate
changes in the environmental conditions during system’s work. The first column in Table 7
represents the algorithms, the second column represents starting collaboration level of each
algorithm and the last four columns represent different target probability distributions. The
first sub column of each distribution represents the gain in percentage for each algorithm
relative to performance of a system without switching methodology, the second sub column
represents the standard deviation of the results from 200 simulations and the third sub column
represents the average number of switches performed in each case. The second and third
columns in Table 7 represent random changes in Ps values and therefore, simulate drastic
environmental changes in the system’s working process. The uniform distribution of these
random values presents an unpredictable and most radical target probability changes, and
“PRSA” algorithm which is based partially on prediction, didn’t performed with best results.
The ascending and linear distributions represent gradually growing Ps values over time;
consequently the simplest switching algorithm is sufficient to greatly improve the system
performance by simply switch the collaboration level to optimal. In this case the more
sophisticated algorithms do not perform well because of their additional set of conditions for
switching, which makes it difficult for the system to pass them in such stable environment
parameters.

The simpler “RLSA” algorithm is preferable in case of non radical changes of the
parameters, because of its great results in improving the system performance in these cases
and its relative low cost for implementation to the system due to its simplicity which requires

less computational resources.
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The “CFSA” and “PRSA” algorithms are preferable in cases that the system

parameters change frequently and/or with high deviations. These algorithms were shown to

give better results in improving system performance in these cases.

Algorithm “CTSA” should be considered for use when the system designer wants to

implement an algorithm which allows customizations (threshold for switching) with

relatively low computational cost.

Table 7: Summary of the results for all distributions with 200 independent simulations with different starting

conditions.
Linear Uniformly Normally Normally
8 |distribution distributed distributed distributed random
> g 0 random values random values | values sorted by
g |94 ascending order
S |8 3
= = =
) © |galgs © |22y © |malgg © a3 [8o
2 |22z 2 = S|z 2 |29 2 = T =
= S |Sal|8g] 5 |Saldg S [Sagg 5 | Saldg
HOR | 99.99 | 0.01 | 2 | 237 |13.27 | 18 | 3.42 [25.32| 19 [ 99.99 [ 0.01 2
HR 9821|132 | 3 |4339| 6.56 | 18 [ 53.87 [ 6.54 | 18 [ 96.51 | 1.01 3
“RLSA”
R |8472|1348| 3 | 2831 | 838 | 174333866 |15|80.75| 6.96 3
H |9361| 605 | 3 (7981 258 |16 [86.75 [ 3.03 | 21 [ 92.81 | 2.87 3
HOR | 53.74 |1 001 | 2 | 3.18 [ 1433 | 16| 4.21 (1854| 7 (2853 11.38 | 2
HR |56.31]| 0.01 | 2 |4466| 6.15 | 16 [ 56.02 [ 6.59 | 7 [ 30.58 [ 7.79 2
“CTSA”
R 5769 (1416 | 3 | 3152 8.47 |17 |49.29 110.14| 6 | 52.19 | 10.11 3
H |8865| 627 | 3 [80.26| 271 [15(88.01 (335 9 (8847 3.13 3
HOR | 53.74 |1 001 | 2 | 7.82 | 1184 |23 | 456 [16.93| 7 (2853 11.38 | 2
HR |56.31] 001 | 2 [4941| 6.11 |22 |57.72(6.21 | 9 [30.58 | 7.79 2
“CFSA”
R 6223|863 | 3 |3633| 855 |21|5126|957| 6 |56.88| 11.36 | 3
H |9439| 001 | 3 (8583 1.61 [20([91.95( 149 | 8 [95.04 0.77 3
HOR | 0.0 0 1698|725 | 2| 502|783]| 4| 0.0 0 1
HR (5196 | 129 | 2 (4284 | 435 | 2 [63.72|529 | 3 | 64.43 | 4.67 2
“PRSA”
R 2979 | 864 | 2 2681|1192 2 | 5428|977 | 4 | 4482 | 1344 | 2
H 8813|001 | 2 (8403 1.92 | 3 (9238158 | 5 [93.02( 1.48 2

Each distribution results are further illustrated in appendix II.

? The “PRSA” algorithm didn’t make switches in these distributions of the target probability.
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6.2 Analysis of the switching points

In this analysis the system was simulated to make switches in collaboration levels for
normally distributed random values of target probability Ps. The simulation was conducted
on the basis of the “RLSA” algorithm but without the constraint of the frequency of
switching. The goal of this analysis is to learn about the amount of contribution of the
discrete switch points to the system overall performance. Results are presented in Figure 24.
The graphs present the number of switches that were made during the simulation vs. their
contribution to the system performance in terms of Vswiicnh Values. The figure illustrates that
the majority of the switch points have poor potential to increase system performance and only
few switch points have a great value on improving it*. Therefore, it is worthy to make
switches in this few points that have high potencial to increase system performance especialy
in a case of switching frequency limitation. This way better results could be achieved by
switching the system less times. This strategy was implemented in “CTSA”, “CFSA” and
“PRSA” algorithms by defining a certain threshold for switching. Note that algorithm
“RLSA” does not have a constraint of a threshold for switching as was described earlier in

order to maintain minimum limitations as possible.

# of switches
H
(@]

0 5 10 15 20 25 30 35
Viswitch (hundreds)

Figure 24: Graphical presentation of number of switches vs. switching gain in random distributed Ps.

® This finding doesn’t mean that the proposed algorithm result in poor performance.
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7 Conclusions and future research

7.1 Conclusions

A comprehensive process was designed and undertaken to develop and evaluate
switching algorithms between different collaboration levels and the impact on the
performance of an integrated human-robot system for target recognition tasks in different
cases. It included the development of a switching objective function and four algorithms for
switching. The algorithms were evaluated using numerical analyses. A logical controller with
a dynamic control mechanism for an uncontrolled human-robot system that includes different
collaboration levels for target recognition tasks in unstructured environments was designed.
This controller allows to maintain maximum system performance despite possible deviations
in the parameter values during task performance. Real-time dynamic switching of the
collaboration levels was achieved by the algorithms implementation in a closed loop control
process. The performance of the introduced switching methodology was simulated
numerically for different parameters and conditions. The four algorithms present different
methods for dynamic switching between collaboration levels. All the algorithms were proven
by numerical simulations to increase system performance. Each algorithm is best suited for a
different task performance and operating scenario as described in 6.1.1. System designers can
choose what algorithm to implement for their system according to their specific environment
and task, by the recommendations presented in this work.

These developments enable smooth real-time adaptation of the combined human-
robot system to many possible changes of the conditions and parameters during system’s task
performance, like changes in the environment, human operator performance and robot
performance. Additionally, it was shown to improve the overall system performance by the
dynamic switching mechanism.

The main conclusions from this research were:

1. It is possible to automatically switch between different collaboration levels in a
dynamic human — robot system.

2. In some cases dynamic switching of collaboration levels in a human — robot system
increases the overall profit and system performance dramatically.

3. At non-controlled or non-automatic switching of the system, it is possible to have a
decrease in the system’s overall performance by switching it to ‘bad’ points by the
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human operator. This will result in the trial to achieve local optimum and miss the
global optimum as was found in the numerical analysis and presented in Appendix 1.

4. Switching execution frequency has a great impact on dynamic switching performance,
which can cause a decrease in the overall system performance in some cases.

5. Increase in the switching execution frequency value greatly improves the score
achieved by the switching algorithms and increases system performance.

6. When a threshold for switching is applied, the limitation on frequency of the switches
decreases the score achieved by the algorithm by not allowing it to switch at major
points.

7. The prediction algorithm, “PRSA”, behaves well under most probabilities and greatly
increases the system performance in most of the simulated scenarios.

8. All algorithms resulted in increased objective function score under radical cases
which include uniformly and normally distributed random values of the system
parameters.

9. The algorithms were shown to increase system’s overall performance by more than
90% in some cases.

10. It is worthwhile to have a dynamic switching frequency so as to enable adaptation to
system parameter changes. This way the switching frequency will be equal or higher
than the changes of the system parameters and the system’s performance could be
improved by 100% as illustrated in Appendix II.

7.2 Future research
Suggestions for future research:

1. Design a methodology for automatic selection of a best algorithm for a specific task.
This may increase the performance of the controlled system and make it robust and

suitable for many operating scenarios.

2. Design of another switching algorithm based on the “PRSA” algorithm that will use
fuzzy logic theory for the switching operation. It should make a decision regarding the
majority of optimal collaboration levels of the same type not by a crisp value as
suggested in this work but by a fuzzy set. This might increase performance due to its

flexibility.
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Introduce the concept of reinforcement learning in order to train the controller and

adapt its actions to the specific environment.

Formulate a presentation of the image sampling process as a stochastic Markov
process with the parameters distribution as analyzed in this work. This will allow to
calculate probabilities of the future states and to predict changes in the environment.

Therefore, it may lead to a more efficient representation of the switching algorithms.

Find a correlation between the two systems constraints, the threshold and the
switching frequency, and determine the influence of different threshold values on
system performance. It is clear that the threshold value strongly depends on the
switching frequency value and at high switching frequency values the threshold

should be lower and vice versa.

Conduct an experiment for actual switching in a real system. This experiment should
include a platform with robot or simulation of a robot with human participants. In the
experiment all the proposed algorithms should be tested for switching the system. The
designed experiment should validate the findings of the numerical simulation
conducted in this thesis and provide experimental proof for the possibility of dynamic
switching of a human-robot system in target recognition tasks. Based on the
experiments values of parameters such as switching frequency, response times and the

switching penalty can be determined.
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Appendix I: The simulation program

The simulation uses Matlab user interface to display the controller messages and operations.
It includes three messages: the first is “collaboration level not optimal” in case of the current
collaboration level is not optimal and the controller cannot switch it due to switching
frequency limitation, the second is “switch to X from Y”” when switching of the collaboration
level is performed by the controller; where X is the collaboration level from which the
controller switches the system and Y is the collaboration level the controller switching to.
The third message is a numerical representation of the current collaboration level. This
message displayed only when collaboration level switch is performed.

<) MATLAB Command Window

File Edit View Window Help

D& i< @B W 2
Collaboration level not optimal
Collaboration level not optimal
Collaboration level not optimal
switch to
R
from
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3
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3
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Figure A-1: Matlab simulation of the control system
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Appendix 11: Additional numerical analysis results
Linear distribution Ps from 0.1 to 1

Here represented the graphs for the simulation result of linear distribution of target
probability Ps. For each of four different starting collaboration levels the objective function
score is presented and the best collaboration level determined and marked for each Ps value.
In Figure A-2 the initial best collaboration level is HOR and then changes to R (marked in
black). In Figure A-3 we will mark the switch points where the best collaboration level
changes. In this case the starting collaboration level was HR, therefore at the beginning of the
simulation the controller switches the best CL to HOR and then to R (marked with red arrow
and ‘switch point’). This is done by the algorithm “RLSA” methodology. In Figure A-4
presented the switching objective function gain for each starting collaboration level. In this
Figure we see that H and HR collaboration levels are never optimal and that HOR is optimal
at first and then R level becomes optimal. The Vswiwch axis indicates the gain for each moment
if the controller made a switch to an optimal collaboration level. For example, if the starting
collaboration level was R than at Ps=0.1 the switching objective function would receive 2850
units for switching it to the best collaboration level (HOR in this case). At Ps=0.8 the
switching objective function will receive no gain for switching the R level because it is
already optimal. In other words Figure A-4 describes algorithm which makes no switching
and therefore illustrates the loose in the global objective function that can be described as the
cost for non optimal work for each collaboration level. The larger the gain of switching
objective function the worthier the switching operation of the controller and therefore the cost
for non optimal work is larger.

% 10° Dynamic Switching % 10° Dynamic Switching
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Figure A-2: Objective function scores for different collaboration levels in linear Ps distribution. The left graph
represents the VI score for all the collaboration levels during system operation. The right graph represents the best
collaboration levels (marked in black).
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Figure A-3: Objective function scores for different collaboration levels in linear Ps distribution with switch points
marked. The left graph represents the VI score for all the collaboration levels during system operation. The right
graph represents the best collaboration levels (marked in black).
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Figure A-4: The cost for non optimal work (without switching) in linear Ps distribution, for all collaboration levels.

The following Figures describe the operation of the switching algorithms in a representative
case of HR starting collaboration level. The gains achieved by the different algorithms are
calculated relative to that starting collaboration level as if the system performs no switching
at all during its work.

Figure A-5 illustrates the switching operation of “RLSA” algorithm. This algorithm makes
switches whenever the switching objective function gain is positive or accordingly whenever
the global objective function will make any benefit from the switch with switching frequency.
The switch points are marked with X on the upper graph. The mid graph shows the gain in
the global objective function score from each frame analyzed relative to score achieved by
initial collaboration level. The lower graph shows the cumulative gain, which is the sum of
the gains in the mid graph. Figure A-6 illustrates the switching operation of “CTSA”
algorithm. This algorithm makes switches whenever the switching objective function gain is
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greater than a desired threshold (1500 in this example). Figure A-7 illustrates the switching
operation of “CFSA” algorithm. This algorithm makes switches whenever the switching
objective function gain is greater than a desired threshold with no switching frequency
limitation except penalty for breaking the frequency. For example: after the ‘switch point” in
current Figure there is a drop in switching objective function score below zero, which
indicates the penalty for switching before the amount of time allowed by the switching
frequency. When the switching objective function score becomes positive again then the time
window of switching frequency is over and the controller can make a switch without any
penalty. Figure A-8 illustrates the switching operation of “PRSA” algorithm. This algorithm
makes switches by prediction from past data. The controller switches the collaboration level
to a new one when it was the best collaboration level most of the time in the time window
between previous switch to present time. This algorithm also uses the strategy of “CFSA”
algorithm of breaking the switching frequency by paying a sufficient cost.
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Figure A-5: The cost for non optimal work with switching in linear Ps distribution — algorithm “RLSA”. (a)
represents the dynamic changes in Vgitch Values over time and dynamic switching operation, (b) represents the gain
in objective function score achieved by each system’s operation, (C) represents the cumulative gain for the entire
operation of the system. The switch points are marked with ‘X°.
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Figure A-6: The cost for non optimal work with switching in linear Ps distribution — algorithm “CTSA”. (a)
represents the dynamic changes in V qitn Values over time and dynamic switching operation, (b) represents the gain
in objective function score achieved by each system’s operation, (C) represents the cumulative gain for the entire
operation of the system. The switch points are marked with ‘X°.
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Figure A-7: The cost for non optimal work with switching in linear Ps distribution — algorithm “CFSA”. (a)
represents the dynamic changes in V sitch Values over time and dynamic switching operation, (b) represents the gain
in objective function score achieved by each system’s operation, () represents the cumulative gain for the entire
operation of the system. The switch points are marked with “X’.
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Figure A-8: The cost for non optimal work with switching in linear Ps distribution — algorithm “PRSA”. (a)
represents the dynamic changes in Vgitch Values over time and dynamic switching operation, (b) represents the gain
in objective function score achieved by each system’s operation, (C) represents the cumulative gain for the entire
operation of the system. The switch points are marked with ‘X°.

Figure A-9 summaries all the gains for different starting collaboration levels received by the
switching objective function score gained from the switching operation for different starting
collaboration levels. The gains are in percentage in scale of 0 to 1 (100%) relative to case
with no switching at all.
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Figure A-9: Summary of all algorithm gains for different starting collaboration levels in linear Ps distribution in
percentage in scale of 0 to 1 (100%b) relative to case with no switching at all.
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Uniformly distributed random values of Ps from 0.1 to 1

Here represented the graphs for the simulation result of uniformly random distribution of
target probability Ps. Figure A-10 represents values of Visicn for each of four different

starting collaboration levels.
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Figure A-10: The cost for non optimal work (without switching) in uniformly random Ps distribution.

Graphical representation of “RLSA”, “CTSA”, “CFSA” and “PRSA” algorithms
performance is shown below. The graphs present the dynamic switching operation of each
algorithm and the gain in global objective function score which has been achieved by the
algorithms during the simulation of the target recognition task of the system.
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Figure A-11: The cost for non optimal work with switching in uniformly random Ps distribution — algorithm
“RLSA”. (a) represents the dynamic changes in Vqitch Values over time and dynamic switching operation, (b) graph
represents the gain in objective function score achieved by each system’s operation, (C) represents the cumulative
gain for the entire operation of the system. The switch points are marked with X’.
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Figure A-12: The cost for non optimal work with switching in uniformly random Ps distribution — algorithm
“CTSA”. (a) represents the dynamic changes in Vyitcn Values over time and dynamic switching operation, (b)
represents the gain in objective function score achieved by each system’s operation, () represents the cumulative
gain for the entire operation of the system. The switch points are marked with <X’.
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Figure A-13: The cost for non optimal work with switching in uniformly random Ps distribution — algorithm
“CFSA”. (a) represents the dynamic changes in Vyin Values over time and dynamic switching operation, (b)
represents the gain in objective function score achieved by each system’s operation, () represents the cumulative
gain for the entire operation of the system. The switch points are marked with X’.
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Figure A-14: The cost for non optimal work with switching in uniformly random Ps distribution — algorithm
“PRSA”. (a) represents the dynamic changes in Vgicn Values over time and dynamic switching operation, (b)
represents the gain in objective function score achieved by each system’s operation, () represents the cumulative
gain for the entire operation of the system. The switch points are marked with <X’.

Figure A-15 presents a comparison of the gains in global objective function score for each
algorithm for different starting collaboration levels. The gains are in percentage in scale of 0
to 1 (100%) relative to case with no switching at all. The negative values indicate negative
effect of the dynamic switching operation to the system that results in decreasing the
objective function score.
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Figure A-15: Summary of all algorithm gains for different starting collaboration levels in uniformly random Ps
distribution in percentage in scale of 0 to 1 (100%6) relative to case with no switching at all.

68



Normally distributed random values of Ps from 0.1 to 1

Here represented the graphs for the simulation result of random normal distribution of target
probability Ps. Ps values are normally distributed with mean 0.5 and standard deviation 0.5.
Figure A-16 represents values of Vswitch for each of four different starting collaboration levels.
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Figure A-16: The cost for non optimal work (without switching) in random normal Ps distribution.

Graphical representation of “RLSA”, “CTSA”, “CFSA” and “PRSA” algorithms
performance is shown below. The graphs present the dynamic switching operation of each
algorithm and the gain in global objective function score which has been achieved by the

algorithms during the simulation of the target recognition task of the system.
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Figure A-17: The cost for non optimal work with switching in random normal Ps distribution — algorithm “RLSA”.
(a) represents the dynamic changes in V qien Values over time and dynamic switching operation, (b) represents the
gain in objective function score achieved by each system’s operation, (c) represents the cumulative gain for the entire
operation of the system. The switch points are marked with ‘X’.
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Figure A-18: The cost for non optimal work with switching in random normal Ps distribution — algorithm “CTSA”.
(a) represents the dynamic changes in Vgitcn Values over time and dynamic switching operation, (b) represents the
gain in objective function score achieved by each system’s operation, (c) represents the cumulative gain for the entire
operation of the system. The switch points are marked with ‘X°.
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Figure A-19: The cost for non optimal work with switching in random normal Ps distribution — algorithm “CFSA”.
(a) represents the dynamic changes in V sircn Values over time and dynamic switching operation, (b) represents the
gain in objective function score achieved by each system’s operation, (c) represents the cumulative gain for the entire
operation of the system. The switch points are marked with “X’.

70



5000
<
2 .4 N N\ /\/A\ A/A\
g LA @
-5000
0 1 2 3 4 5 6 7 8 9 10
time (sec)
5000
£
g ° “ —— W)
~000, 1 2 3 4 5 6 7 8 9 10
time (sec)
£ x10°
g2
g
g1 — (©)
S [ —
g o
=0
O 0 1 2 3 4 5 6 7 8 9 10
time (sec)

Figure A-20: The cost for non optimal work with switching in random normal Ps distribution — algorithm “PRSA”.
(a) represents the dynamic changes in Vgitcn Values over time and dynamic switching operation, (b) represents the
gain in objective function score achieved by each system’s operation, (c) represents the cumulative gain for the entire
operation of the system. The switch points are marked with ‘X°.

Figure A-21 presents a comparison of the gains in global objective function score for each
algorithm for different starting collaboration levels. The gains are in percentage in scale of 0
to 1 (100%) relative to case with no switching at all. The negative values indicate negative
effect of the dynamic switching operation to the system that results in decreasing the
objective function score.
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Figure A-21: Summary of all algorithm gains for different starting collaboration levels in random normal Ps
distribution in percentage in scale of 0 to 1 (100%b) relative to case with no switching at all.
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Ascending normal distribution Ps from 0.1 to 1

Here represented the graphs for the simulation result of random normal distribution in
ascending order of target probability Ps. The Ps values are normally distributed with mean
0.5 and standard deviation 0.5.

Figure A-22 represents values of Vswitch for each of four different starting collaboration levels.
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Figure A-22: The cost for non optimal work (without switching) in ascending normal Ps distribution.

Graphical representation of “RLSA”, “CTSA”, “CFSA” and “PRSA” algorithms
performance is shown below. The graphs present the dynamic switching operation of each
algorithm and the gain in global objective function score which has been achieved by the
algorithms during the simulation of the target recognition task of the system.
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Figure A-23: The cost for non optimal work with switching in ascending normal Ps distribution — algorithm “RLSA”.
(a) represents the dynamic changes in V gich Values over time and dynamic switching operation, (b) represents the
gain in objective function score achieved by each system’s operation, (c) represents the cumulative gain for the entire
operation of the system. The switch points are marked with ‘X’.
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Figure A-24: The cost for non optimal work with switching in ascending normal Ps distribution — algorithm “CTSA”.
(a) represents the dynamic changes in V gitcn Values over time and dynamic switching operation, (b) graph represents
the gain in objective function score achieved by each system’s operation, (C) represents the cumulative gain for the
entire operation of the system. The switch points are marked with “X’.
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Figure A-25: The cost for non optimal work with switching in ascending normal Ps distribution — algorithm “CFSA”.
(a) represents the dynamic changes in V qitch Values over time and dynamic switching operation, (b) represents the
gain in objective function score achieved by each system’s operation, (C) represents the cumulative gain for the entire
operation of the system. The switch points are marked with “X’.
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Figure A-26: The cost for non optimal work with switching in ascending normal Ps distribution — algorithm “PRSA”.
(a) represents the dynamic changes in Vqiten Values over time and dynamic switching operation, (b) represents the
gain in objective function score achieved by each system’s operation, () represents the cumulative gain for the entire
operation of the system. The switch points are marked with ‘X°.

Figure A-27 presents a comparison of the gains in global objective function score for each
algorithm for different starting collaboration levels. The gains are in percentage in scale of 0
to 1 (100%) relative to case with no switching at all.
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Figure A-27: Summary of all algorithm gains for different starting collaboration levels in ascending normal Ps
distribution in percentage in scale of 0 to 1 (100%b) relative to case with no switching at all.
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Numerical analysis of algorithms operation in Ps domain

In this section an analysis of the algorithms for Ps domain will be discussed. The algorithms
were executed for normally distributed random values of target probability Ps. This analysis
made by transform of the time domain of system’s task performance to the target probability
domain. The aim of this analysis is to present the switching operation of the proposed
algorithms according to target probability values and not as a time series. This analysis can
reveal switching at which Ps values have high potencial increasing the systems performance.
The simulation parameters are summarized in Table A-1:

Table A-1: Summary of simulation parameters

Parameter Value

N 1000

VH 10

VAR -1

VR 3

Vwm 5

Ps ranged from 0.1t0 0.9
Ve -2

V; -2000 hr

decision time, tp 5 s/object

motoric time, ty 2 s/(detected object)
robot time, t; 0.01 s/object

Robot sensitivity, d' 0.3

Human sensitivity, d', 0.7

System response time, tresponse | 5 SEC

Frequency time, ¥ 0.000001 sec
Threshold 1500

Presentation of “RLSA” algorithm (Figure A-28): the system performs many switches at
points that have poor Vswiten Value. It is visible that the best values for switching operation
are at the two edges of the Ps scale, while on the middle there are values that have poor
Viswitch Value.
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Figure A-28: The cost for non optimal work with switching in random normal Ps distribution — algorithm “RLSA” in
Ps domain. The graph represents dynamic changes in Vqitch Values over Ps values and dynamic switching operation
(marked by ‘X°).

Presentation of “CTSA” algorithm (Figure A-29): system performs switches in selective high
Viswitch Value points due to switching frequency. Here the switching frequency value

doesn’t allow the algorithm to perform switches at all high valued Vswitch pOINts.
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Figure A-29: The cost for non optimal work with switching in random normal Ps distribution — algorithm “CTSA” in
Ps domain. The graph represents dynamic changes in Vqitcn Values over Ps values and dynamic switching operation
(marked by ‘X°).
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Presentation of “CFSA” algorithm (Figure A-30): a visible improvement — the controller
performs switches at all high valued V\syitch points.
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Figure A-30: The cost for non optimal work with switching in random normal Ps distribution — algorithm “CFSA” in
Ps domain. The graph represents dynamic changes in Vqitch Values over Ps values and dynamic switching operation
(marked by ‘X°).

Presentation of “PRSA” algorithm (Figure A-31): the controller performs switches at the most
strategic points. Here we can see clearly that despite the fact that the controller makes fewer
switches than in “CFSA” algorithm, it manages to achieve even better gain in the objective
function score. This idea is presented by the fact that the majority of the values in Figure A-
have Vswitch Value of 0 or negative, which means that these values are optimal.
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Figure A-31: The cost for non optimal work with switching in random normal Ps distribution — algorithm “PRSA” in
Ps domain. The graph represents dynamic changes in Vgt Values over Ps values and dynamic switching operation
(marked by ‘X*).
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Analysis for constant d'r value and normally distributed random values of d*h and Ps values

In this simulation Ps and d’h parameters receive random values with normal distribution with
mean value of 0.5 and standard deviation 0.5. In this section, two parameters (d’h and Ps) are
changed dynamically during the task performance instead of one (Ps) that was analyzed in
section 6.1. The aim of this simulation is to analyze the performance of the proposed
algorithms to changes of the two parameters which makes a more difficult scenario for the
system’s operation. The robot’s sensitivity, d’r, was set as a constant value due to the finding
of Oren (2006) that robot’s sensitivity changes have neglectible influence on the system
performance compared to human sensitivity and target probability changes.

The simulation parameters are summarized in Table A-2:

Table A-2: Summary of simulation parameters for analysis of rand normal dh and Ps values.

Parameter Value

N 1000

Vi 10

Var -1

Vcr 3

Vu 5

Ps ranged from 0.1 t0 0.9
Ve -2

Vi -2000 hr™

decision time, tp 5 s/object

motoric time, ty 2 s/(detected object)
robot time, t; 0.01 s/object

Robot sensitivity, d', 0.3

Human sensitivity, d'y Ranged from -3t0 3
System response time, tresponse | 5 SEC

Frequency time, V¥ 0.000001 sec
Threshold 1500

Figure A-32 represents values of Vswitch for each of four different starting collaboration levels.
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Figure A-32: The cost for non optimal work (without switching) in random normal Ps and d’h distributions.

Graphical representation of “RLSA”, “CTSA”, “CFSA” and “PRSA” algorithms
performance is shown below. The graphs present the dynamic switching operation of each
algorithm and the gain in global objective function score which has been achieved by the
algorithms during the simulation of the target recognition task of the system.

X 104 RLSA
4

5 A
(8]
% 2]\ \/ | % (a)
> 0 H\X K.ﬁv W /\/\ ﬁ K Y4 /\/(V\/\ X AV % M

0 1 2 3 4 5 6 7 g 9 10

time (sec)

x 10°
£ A N A
[
g 0 (b)

-5
0 1 2 3 4 5 6 7 8 9 10
time (sec)
5

-§ o X 10
g, N e
= — c
0L f ~— |
§ 0 w/\_j_,_//\-\/f_’
O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time (sec)

Figure A-33: The cost for non optimal work with switching in random normal Ps and d'h distributions — algorithm
“RLSA”. (a) represents the dynamic changes in Vgitcn Values over time and dynamic switching operation, (b) graph
represents the gain in objective function score achieved by each system’s operation, () represents the cumulative
gain for the entire operation of the system. The switch points are marked with <X’.

79



4 CTSA

4x 10
e
[8]
§ 2]‘ \/ | % (a)
0
2] b A W ) T s
0 1 2 3 4 5 6 7 8 6" 10
time (sec)
x 10"
£ i A
©
g0 (b)
-5
0 1 2 3 4 5 6 7 8 9 10
time (sec)
£ x10°
S 4
(4]
=
£2 i ©
g N G R — |
] L
o OO 1 2 3 4 5 6 7 8 9 10

time (sec)

Figure A-25: The cost for non optimal work with switching in random normal Ps and d'h distributions — algorithm
“CTSA”. (a) represents the dynamic changes in Vqiten Values over time and dynamic switching operation, (b)
represents the gain in objective function score achieved by each system’s operation, () represents the cumulative
gain for the entire operation of the system. The switch points are marked with <X’.
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Figure A-35: The cost for non optimal work with switching in random normal Ps and d'h distributions — algorithm
“CFSA”. (a) represents the dynamic changes in Vgith Values over time and dynamic switching operation, (b)
represents the gain in objective function score achieved by each system’s operation, () represents the cumulative
gain for the entire operation of the system. The switch points are marked with X’.
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Figure A-36: The cost for non optimal work with switching in random normal Ps and d'h distributions — algorithm
“PRSA”. (a) represents the dynamic changes in Vgienh Values over time and dynamic switching operation, (b)
represents the gain in objective function score achieved by each system’s operation, () represents the cumulative
gain for the entire operation of the system. The switch points are marked with <X’.

Figure A-37 presents a comparison of the gains in global objective function score for each
algorithm for different starting collaboration levels. The gains are in percentage in scale of 0
to 1 (100%) relative to case with no switching at all. The negative values indicate negative
effect of the dynamic switching operation to the system that results in decreasing the
objective function score.
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Hl HOR
B HR
R
[ JH
l T
0.8
£
8 06
2 0.4
5 0.
X
0.2
0
RLSA \‘

CFSA™

PRSA™ HR

HOR

Switching algorithms )
Collaboration level

Figure A-37: Summary of all algorithm gains for different starting collaboration levels in random normal Ps and d'h
distributions in percentage in scale of 0 to 1 (100%b) relative to case with no switching at all.

The analysis results indicate that the algorithms performance is not very much influenced by
an introduction of other dynamically changing parameters to the system. In fact, the
algorithms performed well under the conditions given in this analysis.
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Analysis of a case when Ps change rate isn’t equal to image sampling rate

Ps changes randomly over time with normally distributed values. The change rate of Ps
values is also a random normal distribution which is not influenced by the image sampling
rate of the system.

The simulation parameters are summarized in Table A-3:

Table A-3: Summary of simulation parameters for analysis of a case when Ps change rate isn’t equal to image
sampling rate.

Parameter Value

N 1000

Vy 10

Var -1

VCR 3

Vwu 5

Ps ranged from 0.1 t0 0.9
V¢ -2

V; -2000 hr

decision time, tp 5 s/object

motoric time, ty 2 s/(detected object)
robot time, t, 0.01 s/object

Robot sensitivity, d' 0.3

Human sensitivity, d'y 0.7

System response time, tresponse | 5 SEC

Frequency time, V¥ 0.000001 sec
Threshold 1500

Figure A-38 represents values of Vswitch for each of four different starting collaboration levels.

VIswitch values without switching

7000 T T T T T T T T I T
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Figure A-38: The cost for non optimal work (without switching) in random normal Ps change rate distribution.

Graphical representation of “RLSA”, “CTSA”, “CFSA” and “PRSA” algorithms
performance is shown below. The graphs present the dynamic switching operation of each
algorithm and the gain in global objective function score which has been achieved by the
algorithms during the simulation of the target recognition task of the system.
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Figure A-39: The cost for non optimal work with switching in random normal Ps change rate distribution —
algorithm “RLSA”. (a) represents the dynamic changes in V sitch Values over time and dynamic switching operation,
(b) represents the gain in objective function score achieved by each system’s operation, (C) represents the cumulative
gain for the entire operation of the system. The switch points are marked with <X’.
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Figure A-40: The cost for non optimal work with switching in random normal Ps change rate distribution —
algorithm “CTSA”. (a) represents the dynamic changes in V qitecn Values over time and dynamic switching operation,
(b) represents the gain in objective function score achieved by each system’s operation, (c) represents the cumulative
gain for the entire operation of the system. The switch points are marked with X’.
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Figure A-41: The cost for non optimal work with switching in random normal Ps change rate distribution —
algorithm “CFSA”. (a) represents the dynamic changes in V girch Values over time and dynamic switching operation,
(b) represents the gain in objective function score achieved by each system’s operation, (C) represents the cumulative
gain for the entire operation of the system. The switch points are marked with <X’.
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Figure A-42: The cost for non optimal work with switching in random normal Ps change rate distribution —
algorithm “PRSA”. (a) represents the dynamic changes in V qitch Values over time and dynamic switching operation,
(b) represents the gain in objective function score achieved by each system’s operation, (c) represents the cumulative
gain for the entire operation of the system. The switch points are marked with X’.

Figure A-43 presents a comparison of the gains in global objective function score for each
algorithm for different starting collaboration levels. The gain is in percentage in scale of 0 to
1 (100%) relative to case with no switching at all. The negative values indicate negative
effect of the dynamic switching operation to the system that results in decreasing the
objective function score.
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Comparison of VI gains
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Figure A-43: Summary of all algorithm gains for different starting collaboration levels in rnadom normal Ps change
rate distribution in percentage from scale of 0 to 1 (100%) relative to case with no switching at all.

85



Analysis of a case when switching frequency rate is higher than Ps change frequency

In this analysis, target probability Ps changes randomly over time with random normal
distribution values. The rate of switching frequency was set in this simulation to be higher
than the rate of changes in Ps values. It means that switching could be performed after every
Ps change without any penalty for breaking the switching frequency. The threshold was set to
zero in this simulation, in order not to make unnecessary constraint for the controller. The
aim of this analysis is to test the influence of the switching frequency on the performance of
the proposed algorithms.
The simulation parameters are summarized in Table A-4:

Table A-4: Summary of simulation parameters for analysis of a case when Ps change frequency is larger than

switching frequency.

Graphical

representation of “RLSA”,

Parameter Value
N 1000
Vy 10
Var -1
VCR 3
Vwu 5
Ps ranged from 0.1 to 0.9
V¢ -2
V; -2000 hr'
decision time, tp 5 s/object
motoric time, ty 2 s/(detected object)
robot time, t, 0.01 s/object
Robot sensitivity, d' 0.3
Human sensitivity, d'y 0.7
System response time, tresponse | 5 SEC
Frequency time, V¥ 0.000000000001 sec
Threshold 0
“CTSA”, “CFSA” and

‘CPRSA”

algorithms

performance is shown below. The graphs present the dynamic switching operation of each
algorithm and the gain in global objective function score which has been achieved by the
algorithms during the simulation of the target recognition task of the system.
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Figure A-44: The cost for non optimal work with switching in random normal Ps distribution and different
frequencies — algorithm “RLSA”. (a) represents the dynamic changes in V gitch Values over time and dynamic
switching operation, (b) represents the gain in objective function score achieved by each system’s operation, (C)
represents the cumulative gain for the entire operation of the system. The switch points are marked with ‘X’.
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Figure A-45: The cost for non optimal work with switching in random normal Ps distribution and different
(a) represents the dynamic changes in V gitcn Values over time and dynamic
switching operation, (b) represents the gain in objective function score achieved by each system’s operation, (C)

frequencies — algorithm “RLSA”.

represents the cumulative gain for the entire operation of the system. The switch points are marked with ‘X’.
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Figure A-46: The cost for non optimal work with switching in random normal Ps distribution and different
frequencies — algorithm “RLSA”. (a) represents the dynamic changes in Vgitcn Values over time and dynamic
switching operation, (b) represents the gain in objective function score achieved by each system’s operation, (C)
represents the cumulative gain for the entire operation of the system. The switch points are marked with ‘X’.
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Figure A-47: The cost for non optimal work with switching in random normal Ps distribution and different
frequencies — algorithm “RLSA”. (a) represents the dynamic changes in Vyiwn values over time and dynamic
switching operation, (b) represents the gain in objective function score achieved by each system’s operation, (C)
represents the cumulative gain for the entire operation of the system. The switch points are marked with ‘X’.

Figure A-48 presents a comparison of the gains in global objective function score for each
algorithm for different starting collaboration levels. The gain is in percentage in scale of 0 to
1 (100%) relative to case with no switching at all.
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Comparison of VI gains
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Figure A-48: Summary of all algorithm gains for different starting collaboration levels in ascending normal Ps
distribution and different frequencies in percentage in scale of 0 to 1 (100%b) relative to case with no switching at all.

The simulation revealed that in the case when switching frequency rate is higher than Ps
change frequency, system performance can be improved by 100% (illustrated in “RLSA”,
“CTSA” and “CFSA” algorithms) which equals to optimal system performance. In fact even
when switching frequency rate is equal to Ps change frequency, 100% of improvement in the
system performance also will be achieved by the dynamic switching operation.
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Appendix I11: Dynamic switching pseudocodes

Table A-5: Basic switching pseudocode

1. Initialize:
a. Setk:=1 {kisthe image sampling counter}
2. Getinputs: d’, B and Ps, CCL
3. Calculate OCL
4. If OCL # CCL then
a. Make a switch and send output to the process (new collaboration level)
b. Update parameters:
Set CCL:=OCL

c. Calculate the gain in global objective function score:

6(5)=Vis. _ (6)-Vs GtV (g)

Vs  (0,)-Vs (o)) ifkisswitch point

V . (g ): 'optimal
owten 2K 0 otherwise

Switch

current

d.  Jump to step 5.
Else
e. Gotostepb.
5. If k=mthen

a. Calculate the cumulative gain of the entire operation of the system:

£=35(c,)
k=1

b. Stop
Else
Set k:i=k+1
d. Gotostep 2.
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Table A-6: “RLSA” pseudocode

1. Initialize:
a. Setk:=1 {kisthe image sampling counter}
b. Set T:=0{T isthe time between switching operations}
C. Settimer:=0 {timer is counting time during systems’ operation}
Get inputs: d’, B and Ps, CCL
Calculate OCL
Update timer

o~ oD

Set T:=T +timer

6. IfOCL#CCLand (Vg

i~ Vi ) esponse X Vi >0 and T2y then
a. Make a switch and send output to the process (new collaboration level)
b. Update parameters:

Set CCL:=OCL

Set T:=0

c. Calculate the gain in global objective function score:

6(5)=Vis. (6)-Vs GtV (g)

‘current refference
VISWilch ((Dk) if k is switch point

Switch

V. (g0
suicn & 0 otherwise

d.  Jumptostep 7.

Else
e. Display: “Collaboration level not optimal”
f.  If human operator wants to intervene
Go to step 6.a.
Else
Goto step 7.
7. If k=mthen
a. Calculate the cumulative gain of the entire operation of the system:
m
f::Z 6(cy)
k=1
b. Stop
Else
c. Setk:=k+1

d. Gotostep2.
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Table A-7: “CTSA” pseudocode
1. Initialize:
a. Setk:=1 {kisthe image sampling counter}
b. Set T:=0{7 isthe time between switching operations}
C.  Set timer:=0 {timer is counting time during systems’ operation}
Get inputs: d’, B and Ps
Calculate OCL
Update timer

o~ 0D

Set T:=T +timer

6. IfOCL#CCLand (Vg -Vg

i~ Vi ) esponse XV >B and 1= then
a. Make a switch and send output to the process (new collaboration level)
b. Update parameters:

Set CCL:=OCL

Set T:=0

c. Calculate the gain in global objective function score:

6(5)=Vis._ (6)-Vs GV, (g)

V..., (@) ifkis switch point
Vlswitch (gk ): | "

current refference Switch

0 otherwise

d.  Jumptostep 7.

Else
e. Display: “Collaboration level not optimal”
f.  1f human operator wants to intervene
Go to step 6.a.
Else
Goto step 7.
7. If k=m then
a. Calculate the cumulative gain of the entire operation of the system:
m
f::Z 6(cy)
k=1
b. Stop
Else
Set k:=k+1

d. Gotostep 2.
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Table A-8: “CFSA” pseudocode
1. Initialize:
a. Setk:=1 {kisthe image sampling counter}
b. Set T:=0{7 isthe time between switching operations}
C.  Set timer:=0 {timer is counting time during systems’ operation}
Get inputs: d’, B and Ps
Calculate OCL
Update timer

o~ 0D

Set T:=T +timer

6. IfOCL#CCLand (Vg -Vig

i o )+t response xV, +‘P><Vp >B then
a. Make a switch and send output to the process (new collaboration level)
b. Update parameters:

Set CCL:=OCL

Set T:=0

c. Calculate the gain in global objective function score:

6(5)=Vis._ (6)-Vs GV, (g)

V..., (@) ifkis switch point
Vlswitch (gk ): | "

current refference Switch

0 otherwise

d.  Jumptostep 7.

Else
e. Display: “Collaboration level not optimal”
f.  1f human operator wants to intervene
Go to step 6.a.
Else
Goto step 7.
7. If k=m then
a. Calculate the cumulative gain of the entire operation of the system:
m
f::Z 6(cy)
k=1
b. Stop
Else
Set k:=k+1

d. Gotostep 2.
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Table A-9: “PRSA” pseudocode
1. Initialize:
e. Setk:=1 {kisthe image sampling counter}
f.  Set T:=0{T is the time between switching operations}
g. Settimer:=0 {timer is counting time during systems’ operation}
h.  Seti:=0 {iis the image sampling counter between switches}
i.  SetC;:=0j€ {1,234} {Cjis the counters of collaboration levels 1 to 4}
Get inputs: d’, B and Ps
Calculate OCL
Update timer
Set T:=T +timer

Set i:=i+1

N o o bk~ w b

Case of
a. OCL=HOR then C;:=Cy+1
b. OCL=HR then C,:= C,+1
OCL=R then C3:= C5+1
d. OCL=H then C,:=C,+1

8. IfOCL#CCLand[(Vg ) esponse X Vi FPXV,>B or 12y ] and C>(ir2) then

optimal B IScurent
a. Make a switch and send output to the process (new collaboration level)
b. Update parameters:

Set CCL:=OCL

Set 7:=0

Seti:=0

c. Calculate the gain in global objective function score:

66 )= Vis,.. (6)-Vis )V, ()

current refference

V. (o,) ifkis switch point

V . (g ): ISwnch )
fowtan 2k 0 otherwise

Switch

d. Jump to step 9.
Else

e. Display: “Collaboration level not optimal”

f.  1f human operator wants to intervene
Go to step 8.a.

Else
Go to step 9.
9. Ifk=m then
a. Calculate the cumulative gain of the entire operation of the system:

£=3 5

b. Stop
Else
Set k:=k+1
d. Gotostep2.
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Appendix I1V: Matlab programs

Simulation for linear distribution of Ps:

%This program performs dynamic switching at linear distribution of Ps parameters
% the program calculates the hit and false alarm probabilities and the

% value of the operational cost according to betas and dtags

% This version will show the objective function values for all collaboration

% levels and for all betas combinations.

cle
close all
clear all
Psvector=linspace(0.1,0.9,200);
for rr=1:4
=1
i=1;
1=1;
p=1;
CCL=rr %current collaboration level
CCLw-=rT,;
CCLf=rr;
CCLnews=rr;
VI1(rr)=0;
VI2(rr)=0;
VI13(rr)=0;
VI14(rr)=0;
VI5(rr)=0;
bound1=1;
Xaxis=linspace(0,1,200);
N=1000; % # of objects
Nstr=num2str(N);
tmin=0.0000005; %frequency of the switch
tlastswitch=now; %time of the last switch for “RLSA”
tlastswitchw=now; %time of the last switch for “CTSA”
tlastswitchf=now; %time of the last switch for “CFSA”
tlastswitchnew=now;%time of the last switch for “PRSA”
ttemp=now;
Vp=-5000000000; %penalty for frequency
minv=1000; %minimal value of VIswictch for switching
maxv=1500; %maximal value of VIswictch for switching
VFA2H=10; %VFA/VH aspect ratio range
VAR=1;
VARstr=num2str(VFA2H(VAR)*10);
if VFA2H(VAR)==0.333
VARstr=num2str(3);
end

for Pscount=1:1:200;

Ps=Psvector(Pscount);
Psstr=num2str(Ps*100);

dtag=0.6;

dtag=dtag-1; %d' for human (second detector)
Dh=num2str(-dtag*10);

dtagR=0.1; %d' for robot

dtagR=dtagR-1;

Dr=num2str(-dtagR*10);

VH=10;

VM=5;

VCR=3;
VHstr=num2str(VH);
VFA=-VH.*VFA2H(VAR);
Vc=-2;
VCstr=num2str(-\/c);
Vt=-2000/3600;
Vistr=num2str(-Vt*3600);

trespond=1,;
tr=0.01;

c3=1;
Inbetar=0;
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c2=1;
Inbetah=0;
cl=1;
Inbetarh=2;

% the probabilities of the robot
Zsr(cl,c2,c3)=(-2.*Inbetar+dtagR."2)./(2.*dtagR);
Znr(cl,c2,c3)=(-2.*Inbetar-dtagR."2)./(2.*dtagR);
phr(cl,c2,c3)=1-normcdf(Zsr(cl,c2,c3));
pfar(c1,c2,c3)=1-normcdf(Znr(cl,c2,c3));
ratiol=pfar(c1,c2,c3)./phr(cl,c2,c3);
ratio2=(1-pfar(c1,c2,c3))./(1-phr(cl,c2,c3));

if Inbetar==0 & Inbetah==0 & Inbetarh==0
Zsrtest=(-2.*Inbetar+dtagR."2)./(2.*dtagR);
Znrtest=(-2.*Inbetar-dtagR."2)./(2.*dtagR);
phrtest=1-normcdf(Zsr(c1,c2,c3));
pfartest=1-normedf(Znr(c1,c2,c3));
ratiol=pfar(c1,c2,c3)./phr(cl,c2,c3);
ratio2=(1-pfar(c1,c2,c3))./(1-phr(cl,c2,c3));

end

%the optimal parameters of the robot if he was a single detector
betastar(c1,c2,c3)=((1-Ps)./Ps).*VFA2H(VAR); % calculating Beta*
ZsRstar(c1,c2,c3)=(-2.*log(betastar(c1,c2,c3))+dtagR.”2)./(2.*dtagR);
ZnRstar(c1,c2,c3)=(-2.*log(betastar(c1,c2,c3))-dtagR."2)./(2.*dtagR);
phrstar(c1,c2,c3)=1-normcdf(ZsRstar(c1,c2,c3));
pfarstar(c1,c2,c3)=1-normcdf(ZnRstar(c1,c2,c3));

%the probabilities of the HO (second detector) for object that the
%robot didn't detect
ZsH(c1,c2,c3)=(-2.*Inbetah+dtag."2)./(2.*dtag);
ZnH(c1,c2,c3)=(-2.*Inbetah-dtag.”2)./(2.*dtag);
phh(c1,c2,c3)=1-normcdf(ZsH(c1,c2,c3));
pfah(c1,c2,c3)=1-normcdf(ZnH(c1,c2,c3));

%the probabilities of the HO (second detector) for object that the robot
%already detected
ZsRH(c1,c2,c3)=(-2.*Inbetarh+dtag.”2)./(2.*dtag);
ZnRH(c1,c2,c3)=(-2.*Inbetarh-dtag."2)./(2.*dtag);
phrh(cl,c2,c3)=1-normcdf(ZsRH(c1,c2,c3));
pfarh(c1,c2,c3)=1-normcdf(ZnRH(c1,c2,c3));

% the time parameters

tHh(c1,c2,c3)=5;
tFAh(c1,c2,c3)=5;
tHrh(c1,c2,c3)=5;
tFArh(cl,c2,c3)=5;

tMh(c1,c2,c3)=5;
tCRh(c1,c2,c3)=5;
tMrh(c1,c2,c3)=5;
tCRrh(c1,c2,c3)=5;
tmotor=2;

PHs(c1,c2,c3)=phr(c1,c2,c3).*phrh(cl,c2,c3)+(1-phr(cl,c2,c3)).*phh(cl,c2,c3);
VHs(c1,¢c2,c3)=N.*Ps.*PHs(c1,c2,c3).*VH;
PMs(c1,c2,c3)=phr(cl,c2,c3).*(1-phrh(cl,c2,c3))+(1-phr(cl,c2,c3)).*(1-phh(cl,c2,c3));
VMs(cl,c2,c3)=N.*Ps.*PMs(c1,c2,c3).*VM,;
FFAs(cl,c2,c3)=N.*(1-Ps).*pfar(cl,c2,c3).*pfarh(cl,c2,c3)+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*pfah(cl,c2,c3);
VFAs(cl,c2,c3)=FFAs(c1,c2,c3).*VFA;
FCRs(c1,c2,c3)=N.*(1-Ps).*pfar(c1,c2,c3).*(1-pfarh(cl,c2,c3))+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*(1-pfah(cl,c2,c3));
VCRs(c1,c2,c3)=FCRs(c1,c2,c3).*VCR;

ts(c1,c2,c3)=N.*Ps.*phr(c1,c2,c3).*phrh(cl,c2,c3).*tHrh(c1,c2,c3)+N.*Ps.*(1-phr(c1,c2,c3)).*phh(cl,c2,c3).*tHh(c1,c2,c3)+N.*(1-
Ps).*pfar(c1,c2,c3).*pfarh(cl,c2,c3).*tFArh(cl,c2,c3)+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*pfah(cl,c2,c3).*tFAh(cl,c2,c3)...
+N.*Ps.*phr(c1,c2,c3).*(1-phrh(cl,c2,c3)).*tMrh(c1,c2,c3)+N.*Ps.*(1-phr(c1,c2,c3)).*(1-phh(c1,c2,c3)).*tMh(c1,c2,c3)+N.*(1-
Ps).*pfar(c1,c2,c3).*(1-pfarh(cl,c2,c3)).*tCRrh(cl,c2,c3)+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*(1-pfah(cl,c2,c3)).*tCRh(c1,c2,c3)+tr;

tsHORr(c1,c2,c3)=N.*Ps.*phr(c1,c2,c3).*phrh(c1,c2,c3).*(tHrh(c1,c2,c3)+tmotor)+N.*Ps.*(1-

phr(c1,c2,c3)).*phh(cl,c2,c3).*(tHh(c1,c2,c3)+tmotor)+N.*(1-Ps).*pfar(cl,c2,c3).*pfarh(cl,c2,c3).*(tFArh(cl,c2,c3)+tmotor)+N.*(1-
Ps).*(1-pfar(c1,c2,c3)).*pfah(cl,c2,c3).*(tFAh(cl,c2,c3)+tmotor)...
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+N.*Ps.*phr(c1,c2,c3).*(1-phrh(c1,c2,c3)).*tMrh(c1,c2,c3)+N.*Ps.*(1-phr(c1,c2,c3)).*(1-phh(cl,c2,c3)).*tMh(c1,c2,c3)+N.*(1-
Ps).*pfar(c1,c2,c3).*(1-pfarh(cl,c2,c3)).*tCRrh(cl,c2,c3)+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*(1-pfah(cl,c2,c3)).*tCRh(c1,c2,c3)+tr;

tsHOR(c1,c2,c3)=N.*Ps.*phr(c1,c2,c3).*phrh(c1,c2,c3).*tHrh(c1,c2,c3)+N.*Ps.*(1-
phr(c1,c2,c3)).*phh(cl,c2,c3).*(tHh(c1,c2,c3)+tmotor)+N.*(1-Ps).*pfar(cl,c2,c3).*pfarh(cl,c2,c3).*tFArh(cl,c2,c3)+N.*(1-Ps).*(1-
pfar(c1,c2,c3)).*pfah(cl,c2,c3).*(tFAh(cl,c2,c3)+tmotor)...
+N.*Ps.*phr(c1,c2,c3).*(1-phrh(cl,c2,c3)).*(tMrh(c1,c2,c3)+tmotor)+N.*Ps.*(1-phr(c1,c2,c3)).*(1-
phh(c1,c2,c3)).*tMh(c1,c2,c3)+N.*(1-Ps).*pfar(c1,c2,c3).*(1-pfarh(cl,c2,c3)).*(tCRrh(c1,c2,c3)+tmotor)+N.*(1-Ps).*(1-
pfar(c1,c2,c3)).*(1-pfah(cl,c2,c3)).*tCRh(c1,c2,c3)+tr;

Ndetect(c1,c2,c3)=(N.*Ps.*phr(c1,c2,c3).*phrh(cl,c2,c3)+N.*Ps.*(1-phr(cl,c2,c3)).*phh(cl,c2,c3)+N.*(1-
Ps).*pfar(c1,c2,c3).*pfarh(cl,c2,c3)+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*pfah(cl,c2,c3));
VTs(cl,c2,c3)=ts(c1,c2,c3).*Vt+(N.*Ps.*phr(cl,c2,c3).*phrh(cl,c2,c3)+N.*Ps.*(1-phr(cl,c2,c3)).*phh(cl,c2,c3)+N.*(1-
Ps).*pfar(cl,c2,c3).*pfarh(c1,c2,c3)+N.*(1-Ps).*(1-pfar(c1,c2,c3)).*pfah(cl,c2,c3)).*Vc;
VTsHORr(c1,c2,c3)=tsHORr(c1,c2,c3).*Vt+(N.*Ps.*phr(cl,c2,c3).*phrh(cl,c2,c3)+N.*Ps.*(1-phr(c1,c2,c3)).*phh(cl,c2,c3)+N.*(1-
Ps).*pfar(cl,c2,c3).*pfarh(cl,c2,c3)+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*pfah(cl,c2,c3)).*Vc;
VTsHOR(c1,c2,c3)=tsHOR(c1,c2,c3).*Vt+(N.*Ps.*phr(c1,c2,c3).*phrh(c1,c2,c3)+N.*Ps.*(1-phr(c1,c2,c3)).*phh(cl,c2,c3)+N.*(1-
Ps).*pfar(c1,c2,c3).*pfarh(cl,c2,c3)+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*pfah(cl,c2,c3)).*Vc;
VIs(c1,c2,c3)=VHs(cl,c2,c3)+VMs(cl,c2,c3)+VFAs(cl,c2,c3)+VCRs(cl,c2,c3)+VTs(cl,c2,c3);
VIsHORr(c1,c2,c3)=VHs(cl,c2,c3)+VMs(cl,c2,c3)+VFAs(cl,c2,c3)+VCRs(cl,c2,c3)+VTsHORr(c1,c2,c3);
VIsSHOR(c1,c2,c3)=VHs(c1,c2,c3)+VMs(cl,c2,c3)+VFAs(cl,c2,c3)+VCRs(cl,c2,c3)+VTsHOR(c1,c2,c3);

PHsR(c1,c2,c3)=phr(cl,c2,c3);

VHsR(c1,c2,c3)=N.*Ps.*PHsR(c1,c2,c3).*VH;
FFAsR(c1,c2,c3)=N.*(1-Ps).*pfar(c1,c2,c3);

VFAsR(c1,c2,c3)=FFAsR(c1,c2,c3).*VFA,

tsR(c1,c2,c3)=tr;
VTsR(c1,c2,c3)=tsR(c1,c2,c3).*Vt+(N.*Ps.*phr(cl,c2,c3)+N.*(1-Ps).*pfar(cl,c2,c3)).*Vc;
VIsR(c1,c2,c3)=VHsR(c1,c2,c3)+VFAsR(c1,c2,c3)+VTsR(c1,c2,c3);

% the probabilities of the HO collaboration level were taken from the

% robot probabilities and the difference between the HO and the R

% collaboration levels is just on the times parameters.

PHsHO(c1,c2,c3)=phr(c1,c2,c3);

VHsHO(c1,c2,c3)=N.*Ps.*PHsHO(c1,c2,c3).*VH;

FFAsHO(c1,c2,c3)=N.*(1-Ps).*pfar(c1,c2,c3);

VFAsHO(c1,c2,c3)=FFAsHO(c1,c2,c3).*VFA;

tsHO(c1,c2,c3)=N.*Ps.*PHsHO(c1,c2,c3).*(tHh(c1,c2,c3)+tmotor)+FFAsHO(c1,c2,c3).*(tFAh(cl,c2,c3)+tmotor)...
+N.*Ps.*(1-PHsHO(c1,c2,c3)).*tMh(c1,c2,c3)+N.*(1-Ps).*(1-pfar(c1,c2,c3)).*tCRh(c1,c2,c3);

VTsHO(c1,c2,c3)=tsHO(c1,c2,c3).*Vt+(N.*Ps.*phr(c1,c2,c3)+N.*(1-Ps).*pfar(cl,c2,c3)).*Vc;

VIsHO(c1,c2,c3)=VHsHO(c1,c2,c3)+VFAsHO(c1,c2,c3)+VTsHO(c1,c2,c3);

%
%switching calculations
%

CL(Pscount,:)=[VIsHORr(c1,c2,c3) VISHOR(c1,c2,c3) VIsR(c1,c2,c3) VIsHO(c1,c2,c3)]; %values' matrix of different collaboration
levels

[C,CCLtemp]=max(CL(Pscount,:)); %C=value, CCLtemp=location

SV(1,Pscount)=[C]; %switch vector of best collaboration values for each row in CL

VIso=SV(1,Pscount);

VIscl=CL(Pscount,rr);

VIsc=CL(Pscount,CCL);

VlIscw=CL(Pscount,CCLw);

Vlscf=CL(Pscount,CCLf);

Vlscnew=CL(Pscount,CCLnew);

al='"HOR;
a2='HR’,
a3='R’;
ad="H";

switch CCLtemp

case 1
labell=al;

case 2
labell=a2;

case 3
labell=a3;

otherwise
labell=a4;

end
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switch CCL
case 1
label2=al;
case 2
label2=a2;
case 3
label2=a3;
otherwise
label2=a4;
end

SVF(1,Pscount)=[CCLtemp];
%
%Switch objective fuction for ploting switch points
%

VIswitchl(rr,Pscount)=(VIso-Vlscl); %+trespond*Vi+Vp*(ttemp+tmin-now)*(Vp*(ttemp+tmin-now)<0); %

VIswitch(rr,Pscount)=(VIso-Vlsc); % RLSA” for calculation

Vlswitch1(rr,Pscount)=(VIso-Vlsc);%”RLSA” for plot

VlIswitchw(rr,Pscount)=(VIso-VIscw); %”CTSA” for calculation

Vliswitchwl(rr,Pscount)=(VIso-Vlscw); % CTSA” for plot

Vliswitchfwl(rr,Pscount)=(VIso-VIscf)+Vp*(tlastswitchf+tmin-now)*(Vp*(tlastswitchf+tmin-now)<0); % CFSA” for plot

Vliswitchfw(rr,Pscount)=(VIso-Vlscf); %”CFSA” for calculation

Vliswitchfnew1(rr,Pscount)=(V1so-VIscnew)+trespond*Vt+Vp*(tlastswitchnew-+tmin-now)*(Vp*(tlastswitchnew+tmin-now)<0);
%”’PRSA” for plot

VIswitchfnew(rr,Pscount)=(VIso-VIscnew); %”PRSA” for calculation

%

%
%switching algorithm
%

%”RLSA” algorithm

if CCLtemp~=CCL
tcurrent=now;
if tcurrent-tlastswitch>tmin %checking the frequency

disp(‘switch to');
disp(labell);
disp(‘from");
disp(label2);
CCL=CCLtemp
coY(rr,j)=C;
coX(rr,j)=Pscount;
coYs(rr,j)=VIswitch1(rr,Pscount); %for the switching objective function plot
tlastswitch=tcurrent;
=it
VIswitch(rr,Pscount)=-trespond*Vt; %updating VIswitch as optimal value after switching
else
disp(‘Collaboration level not optimal’);
end
end

%”CTSA” algorithm

if CCLtemp~=CCLw %optimization for switching
tcurrent=now;
if tcurrent-tlastswitchw>tmin %checking the frequency
if VIswitchw(rr,Pscount)>maxv
CCLw=CCLtemp;
coYw(l)=C;
coXw(rr,l)=Pscount;
coYsw(rr,I)=VIswitchwl(rr,Pscount); %for the switching objective function plot
tlastswitchw=tcurrent;
I=1+1;
VIswitchw(rr,Pscount)=-trespond*Vt; %updating VIswitch as optimal value after switching
end
end
end

%”CFSA” algorithm
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if CCLtemp~=CCLf %optimization for switching with frequency
tcurrent=now;
if VIswitchfw1(rr,Pscount)>maxv
CCLf=CCLtemp;
coXf(rr,i)=Pscount;
coYsfw(rr,i)=VIswitchfwl(rr,Pscount);
VIswitchfw(rr,Pscount)=-trespond*Vt-Vp*(tlastswitchf+tmin-now)*(Vp*(tlastswitchf+tmin-now)<0); %updating VI with response
time for switching
i=i+1;
tlastswitchf=tcurrent;
end
end

%”PRSA” algorithm

if CCLtemp~=CCLnew %optimization for switching with frequency
tcurrent=now;
if (tcurrent-tlastswitchnew>tmin)|(VIswitchfnew1(rr,Pscount)>maxv)
% if VIswitchfnew(Pscount)>maxv
bound2=Pscount;

BVF(boundl:bound2)=[CCLtemp];
newVF(boundl1:bound2)=SVF(bound1:bound2)==BVF(boundl:bound2);
if sum(newVF(bound1:bound2))>((bound2-bound1)/2)

CCLnew=CCLtemp;

coXfnew(rr,p)=Pscount;
coYsfnew(rr,p)=VIswitchfnew1(rr,Pscount);

p=p+l;
boundl=Pscount+1;

Vlswitchfnew(rr,Pscount)=-trespond*Vt-Vp*(tlastswitchnew-+tmin-now)*(Vp*(tlastswitchnew+tmin-now)<0);
tlastswitchnew=tcurrent;
end
end
end

VI11(rr)=VlIswitchl(rr,Pscount)+V11(rr); %regular cost - S1
VI12(rr)=VIswitch(rr,Pscount)+VI2(rr); %cost with switch - “RLSA”
VI13(rr)=VIswitchw(rr,Pscount)+VI3(rr); %cost with switch and maxv filter - “CTSA”
VI14(rr)=VIswitchfw(rr,Pscount)+V14(rr); %cost with switch and maxv filter after frequency penalty - “CFSA”
VI5(rr)=VIswitchfnew(rr,Pscount)+VI15(rr); %cost with switch and maxv filter after frequency penalty and new algorithm -
“PRSA”

end %Pscount
end Yrr

%
%Figures
%

Figure(1)

subplot(1,2,1)
plot(Xaxis,CL(:,1),-',Xaxis,CL(:,2),--',Xaxis,CL(:,3),"",Xaxis,CL(:,4),"-.")
xlabel('time');

ylabel('V1Y);

title('Dynamic Switching');

set(findobj(gca, Type','line','Color','black’),'LineWidth',2);
legend('HOR','HR','R','H")

subplot(1,2,2)
plot(Xaxis,CL(:,1),-",Xaxis,CL(:,2),'--',Xaxis,CL(:,3),"", Xaxis,CL(:,4),-.", Xaxis,SV,'black’)
xlabel(‘time');

ylabel('VIY);

title('Dynamic Switching');

set(findobj(gca, Type','line','Color’,'black’),'LineWidth',3);

legend('HOR'HR','R",'H")

text(Xaxis(30),SV(30), \leftarrow Best CL','Horizontal Alignment','left','FontSize',20);

Figure(2)

subplot(1,2,1)
plot(Xaxis,CL(:,1),-',Xaxis,CL(:,2),--',Xaxis,CL(:,3),"",Xaxis,CL(:,4),-.")
xlabel('time");

ylabel('VIY);

title('Dynamic Switching with switch points');
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set(findobj(gca, Type','line','Color','black’),'LineWidth',2);
legend('HOR'HR',R",'H")
text(Xaxis(coX(2,find(coX(2,:)))),coY(2,find(coY(2,:))), \leftarrow switch point','FontSize',15,'color','r");

subplot(1,2,2)
plot(Xaxis,CL(:,1),-',Xaxis,CL(:,2),'--',Xaxis,CL(:,3),"",Xaxis,CL(:,4),-.", Xaxis,SV,'black’)
xlabel('time");

ylabel('VIY;

title('Dynamic Switching with switch points');

set(findobj(gca, Type','line','Color','black’),'LineWidth',3);

legend('HOR'HR',R",'H")

text(Xaxis(30),SV(30),\leftarrow Best CL','Horizontal Alignment','left','FontSize',20);
text(Xaxis(coX(2,find(coX(2,:)))),coY(2,find(coY(2,:))), \leftarrow switch point','FontSize',15,'color','r');

Figure(3)%the score if we stay always at the same collaboration level
plot(Xaxis,VIswitchl(1,:),'',Xaxis,VIswitchl(2,:),--',Xaxis,VIswitchl(3,:),":", Xaxis,VIswitchl(4,:),-.")
xlabel(‘time");

ylabel('VIswitch');

title('S1");

set(findobj(gca, Type','line','Color','black’),'LineWidth',2);

legend('HOR'HR','R",'H")

plotlvi=2;

Figure(4)

subplot(3,1,1)

plot(Xaxis,VIswitchl(plotlvl,:))

xlabel('time");

ylabel('VIswitch');

title(““RLSA™);

set(findobj(gca, Type','line’,'Color','black’),'LineWidth',2);
text(Xaxis(coX(plotlvl,find(coX(plotlvl,:)))),coYs(plotlvl,find(coYs(plotlvl,:))),'x','FontSize',20,'color','r','Horizontal Alignment','center’);
grid on

subplot(3,1,2)
plot(Xaxis,VIswitchl(plotlvl,:)-ViIswitch(plotlvl,:))
grid on

xlabel(‘time");

ylabel('Gain’);

subplot(3,1,3)
plot(Xaxis,cumsum(VIswitchl(plotlvl,:)-Viswitch(plotivl,:)))
grid on

xlabel(‘time");

ylabel('Cumulative gain’);

Figure(5)

subplot(3,1,1)

plot(Xaxis,VIswitchwl(plotlvl,:),Xaxis,maxv,'--.k")

xlabel(‘time");

ylabel('VIswitch');

title("““CTSA™);

set(findobj(gca, Type','line','Color’,'black’),'LineWidth',2);
text(Xaxis(coXw(plotlvl,find(coXw(plotlvl,:)))),coYsw(plotlvl,find(coYsw(plotlvl,:))),'x','FontSize',20,'color','r','Horizontal Alignment','cent
er');

grid on

subplot(3,1,2)
plot(Xaxis,VIswitchl(plotlvl,:)-ViIswitchw(plotlvl,:))
grid on

xlabel('time");

ylabel(‘Gain’);

subplot(3,1,3)
plot(Xaxis,cumsum(VIswitchl(plotlvl,:)-ViIswitchw(plotlvl,:)))
grid on

xlabel('time");

ylabel('Cumulative gain');

Figure(6)

subplot(3,1,1)
plot(Xaxis,VIswitchfwl(plotlvl,:),Xaxis,maxv,'-- k')
xlabel('time");

ylabel('VIswitch');

title(““CFSA™);
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set(findobj(gca, Type','line','Color','black’),'LineWidth',2);
text(Xaxis(coXf(plotlvl,find(coXf(plotlvl,:)))),coYsfw(plotlvl,find(coYsfw(plotlvl,:))),’x','FontSize',20,'color','r','Horizontal Alignment','cente
r;

grid on

subplot(3,1,2)
plot(Xaxis,VIswitchl(plotlvl,:)-Viswitchfw(plotlvl,:))
grid on

xlabel('time');

ylabel('Gain’);

subplot(3,1,3)
plot(Xaxis,cumsum(VIswitchl(plotlvl,:)-VIswitchfw(plotivl,:)))
grid on

xlabel(‘time');

ylabel('Cumulative gain');

Figure(7)

subplot(3,1,1)

plot(Xaxis,VIswitchfnewl(plotlvl,:),Xaxis,maxv,"--.k)

xlabel('time');

ylabel('VIswitch');

title(““PRSA™);

set(findobj(gca, Type','line','Color','black’),'LineWidth',2);
text(Xaxis(coXfnew(plotlvl,find(coXfnew(plotlvl,:)))),coYsfnew(plotlvl,find(coYsfnew(plotivl,:))),x','FontSize',20,'color','r','Horizontal Alig
nment','center');

grid on

subplot(3,1,2)
plot(Xaxis,VIswitchl(plotlvl,:)-VIswitchfnew(plotlvl,:))
grid on

xlabel(‘time");

ylabel('Gain’);

subplot(3,1,3)
plot(Xaxis,cumsum(VIswitchl(plotlvl,:)-Viswitchfnew(plotlvl,:)))
grid on

xlabel(‘time");

ylabel('Cumulative gain’);

Figure(8)

subplot(2,1,1)

Xaxis=[12345];

Yaxis=[(VI1-VI2)' (VI1-VI3)' (VI1-VI4)' (VI1-VI5)T;
bar(Yaxis)

set(gca,'XTickLabel' ,{“RLSA™,““CTSA™, "““CFSA™""“PRSA™"})
xlabel('type of algorithm’);

ylabel('VI gain’);

title('Comparison of VI gains');

legend('HOR'HR',R",'H")

subplot(2,1,2)

Xaxis=[12 34 5],

Yaxis=[((VI1-V12)./VI1)' ((VI1-VI3)./VI1)' ((VI1-VI4)./V11) ((VI1-VI5)./VIL)T;
bar(Yaxis)

set(gca, ' XTickLabel',{“RLSA™,'“CTSA™", ““CFSA™,'“PRSA™})

xlabel('type of algorithm");

ylabel('VI gain in percentage’);

title('Comparison of VI gains');

legend('HOR'/HR',R",'H")
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Simulation for random normal distribution of Ps:

%This program performs dynamic switching at random normal distribution of Ps parameters
% the program calculates the hit and false alarm probabilities and the

% value of the operational cost according to betas and dtags

% This version will show the objective function values for all collaboration

% levels and for all betas combinations.

cle
close all
clear all
Psvector=randn(1,200);
ctmp=max(abs(Psvector));
Psvector=Psvector./(ctmp*2);
Psvector=abs(Psvector+0.49);
for rr=1:4
=1
i=1;
1=1;
p=1;
CCL=rr %current collaboration level
CCLw=rT;
CCLf=rr;
CCLnews=rr;
VI1(rr)=0;
VI2(rr)=0;
VI13(rr)=0;
VI4(rr)=0;
VI5(rr)=0;
bound1=1;
Xaxis=linspace(0,1,200);
N=1000; % # of objects
Nstr=num2str(N);
tmin=0.0000005; %frequency of the switch
tlastswitch=now; %time of the last switch for “RLSA”
tlastswitchw=now; %time of the last switch for “CTSA”
tlastswitchf=now; %time of the last switch for “CFSA”
tlastswitchnew=now;%time of the last switch for “PRSA”
ttemp=now;
Vp=-5000000000; %penalty for frequency
minv=1000; %minimal value of VIswictch for switching
maxv=1500; %maximal value of Vlswictch for switching
VFA2H=10; %VFA/VH aspect ratio range
VAR=1;
VARstr=num2str(VFA2H(VAR)*10);
if VFA2H(VAR)==0.333
VARstr=num2str(3);
end

for Pscount=1:1:200;

Ps=Psvector(Pscount);
Psstr=num2str(Ps*100);

dtag=0.6;

dtag=dtag-1; %d' for human (second detector)
Dh=num2str(-dtag*10);

dtagR=0.1; %d' for robot

dtagR=dtagR-1;

Dr=num2str(-dtagR*10);

VH=10;

VM=5;

VCR=3;
VHstr=num2str(VH);
VFA=-VH.*VFA2H(VAR);
Vc=-2;
VCstr=num2str(-Vc);
Vt=-2000/3600;
Vistr=num2str(-Vt*3600);

trespond=1,;
tr=0.01;

c3=1;

Inbetar=0;
c2=1;
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Inbetah=0;
cl=1,
Inbetarh=2;

% the probabilities of the robot
Zsr(cl,c2,c3)=(-2.*Inbetar+dtagR."2)./(2.*dtagR);
Znr(c1,c2,c3)=(-2.*Inbetar-dtagR."2)./(2.*dtagR);
phr(cl,c2,c3)=1-normcdf(Zsr(cl,c2,c3));
pfar(c1,c2,c3)=1-normcdf(Znr(cl,c2,c3));
ratiol=pfar(c1,c2,c3)./phr(cl,c2,c3);
ratio2=(1-pfar(c1,c2,c3))./(1-phr(cl,c2,c3));

if Inbetar==0 & Inbetah==0 & Inbetarh==0
Zsrtest=(-2.*Inbetar+dtagR."2)./(2.*dtagR);
Znrtest=(-2.*Inbetar-dtagR.*2)./(2.*dtagR);
phrtest=1-normcdf(Zsr(c1,c2,c3));
pfartest=1-normcdf(Znr(c1,c2,c3));
ratiol=pfar(c1,c2,c3)./phr(cl,c2,c3);
ratio2=(1-pfar(c1,c2,c3))./(1-phr(cl,c2,c3));

end

%the optimal parameters of the robot if he was a single detector
betastar(c1,c2,c3)=((1-Ps)./Ps).*VFA2H(VAR); % calculating Beta*
ZsRstar(c1,c2,c3)=(-2.*log(betastar(c1,c2,c3))+dtagR."2)./(2.*dtagR);
ZnRstar(c1,c2,c3)=(-2.*log(betastar(c1,c2,c3))-dtagR."2)./(2.*dtagR);
phrstar(c1,c2,c3)=1-normcdf(ZsRstar(c1,c2,c3));
pfarstar(c1,c2,c3)=1-normcdf(ZnRstar(c1,c2,c3));

%the probabilities of the HO (second detector) for object that the
%robot didn't detect
ZsH(c1,c2,c3)=(-2.*Inbetah+dtag."2)./(2.*dtag);
ZnH(c1,c2,c3)=(-2.*Inbetah-dtag.”2)./(2.*dtag);
phh(c1,c2,c3)=1-normedf(ZsH(c1,c2,c3));
pfah(c1,c2,c3)=1-normcdf(ZnH(c1,c2,c3));

%the probabilities of the HO (second detector) for object that the robot
%already detected
ZsRH(c1,c2,c3)=(-2.*Inbetarh+dtag.*2)./(2.*dtag);
ZnRH(c1,c2,c3)=(-2.*Inbetarh-dtag.”2)./(2.*dtag);
phrh(cl,c2,c3)=1-normedf(ZsRH(c1,c2,c3));
pfarh(c1,c2,c3)=1-normcdf(ZnRH(c1,c2,c3));

% the time parameters

tHh(c1,c2,c3)=5;
tFAh(c1,c2,c3)=5;
tHrh(c1,c2,c3)=5;
tFArh(cl,c2,c3)=5;

tMh(c1,c2,c3)=5;
tCRh(c1,c2,c3)=5;
tMrh(c1,c2,c3)=5;
tCRrh(c1,c2,c3)=5;
tmotor=2;

PHs(c1,c2,c3)=phr(cl,c2,c3).*phrh(cl,c2,c3)+(1-phr(cl,c2,c3)).*phh(cl,c2,c3);
VHs(c1,c2,c3)=N.*Ps.*PHs(c1,c2,c3).*VH;
PMs(c1,c2,c3)=phr(c1,c2,c3).*(1-phrh(cl,c2,c3))+(1-phr(cl,c2,c3)).*(1-phh(cl,c2,c3));
VMs(cl,c2,c3)=N.*Ps.*PMs(c1,c2,c3).*VM;
FFAs(c1,c2,c3)=N.*(1-Ps).*pfar(cl,c2,c3).*pfarh(cl,c2,c3)+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*pfah(cl,c2,c3);
VFAs(cl,c2,c3)=FFAs(c1,c2,c3).*VFA;
FCRs(c1,¢2,c3)=N.*(1-Ps).*pfar(c1,c2,c3).*(1-pfarh(cl,c2,c3))+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*(1-pfah(cl,c2,c3));
VCRs(c1,c2,c3)=FCRs(c1,c2,c3).*VCR;

ts(c1,c2,c3)=N.*Ps.*phr(c1,c2,c3).*phrh(cl,c2,c3).*tHrh(c1,c2,c3)+N.*Ps.*(1-phr(c1,c2,c3)).*phh(cl,c2,c3).*tHh(c1,c2,c3)+N.*(1-
Ps).*pfar(cl,c2,c3).*pfarh(c1,c2,c3).*tFArh(cl,c2,c3)+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*pfah(cl,c2,c3).*tFAh(c1,c2,c3)...
+N.*Ps.*phr(c1,c2,c3).*(1-phrh(cl,c2,c3)).*tMrh(c1,c2,c3)+N.*Ps.*(1-phr(c1,c2,c3)).*(1-phh(cl,c2,c3)).*tMh(c1,c2,c3)+N.*(1-
Ps).*pfar(cl,c2,c3).*(1-pfarh(cl,c2,c3)).*tCRrh(c1,c2,c3)+N.*(1-Ps).*(1-pfar(c1,c2,c3)).*(1-pfah(cl,c2,c3)). *tCRh(c1,c2,c3)+tr;

tsHORr(c1,c2,c3)=N.*Ps.*phr(c1,c2,c3).*phrh(c1,c2,c3).*(tHrh(c1,c2,c3)+tmotor)+N.*Ps.*(1-

phr(c1,c2,c3)).*phh(c1,c2,c3).*(tHh(c1,c2,c3)+tmotor)+N.*(1-Ps).*pfar(c1,c2,c3).*pfarh(cl,c2,c3).*(tFArh(cl,c2,c3)+tmotor)+N.*(1-
Ps).*(1-pfar(c1,c2,c3)).*pfah(cl,c2,c3).*(tFAh(cl,c2,c3)+tmotor)...
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+N.*Ps.*phr(c1,c2,c3).*(1-phrh(c1,c2,c3)).*tMrh(c1,c2,c3)+N.*Ps.*(1-phr(c1,c2,c3)).*(1-phh(cl,c2,c3)).*tMh(c1,c2,c3)+N.*(1-
Ps).*pfar(c1,c2,c3).*(1-pfarh(cl,c2,c3)).*tCRrh(cl,c2,c3)+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*(1-pfah(cl,c2,c3)).*tCRh(c1,c2,c3)+tr;

tsHOR(c1,c2,c3)=N.*Ps.*phr(c1,c2,c3).*phrh(c1,c2,c3).*tHrh(c1,c2,c3)+N.*Ps.*(1-
phr(c1,c2,c3)).*phh(cl,c2,c3).*(tHh(c1,c2,c3)+tmotor)+N.*(1-Ps).*pfar(c1,c2,c3).*pfarh(cl,c2,c3).*tFArh(cl,c2,c3)+N.*(1-Ps).*(1-
pfar(c1,c2,c3)).*pfah(cl,c2,c3).*(tFAh(cl,c2,c3)+tmotor)...
+N.*Ps.*phr(c1,c2,c3).*(1-phrh(cl,c2,c3)).*(tMrh(c1,c2,c3)+tmotor)+N.*Ps.*(1-phr(c1,c2,c3)).*(1-
phh(c1,c2,c3)).*tMh(c1,c2,c3)+N.*(1-Ps).*pfar(c1,c2,c3).*(1-pfarh(cl,c2,c3)).*(tCRrh(c1,c2,c3)+tmotor)+N.*(1-Ps).*(1-
pfar(c1,c2,c3)).*(1-pfah(cl,c2,c3)).*tCRh(c1,c2,c3)+tr;

Ndetect(c1,c2,c3)=(N.*Ps.*phr(c1,c2,c3).*phrh(cl,c2,c3)+N.*Ps.*(1-phr(cl,c2,c3)).*phh(cl,c2,c3)+N.*(1-
Ps).*pfar(c1,c2,c3).*pfarh(cl,c2,c3)+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*pfah(cl,c2,c3));
VTs(cl,c2,c3)=ts(c1,c2,c3).*Vt+(N.*Ps.*phr(cl,c2,c3).*phrh(cl,c2,c3)+N.*Ps.*(1-phr(cl,c2,c3)).*phh(cl,c2,c3)+N.*(1-
Ps).*pfar(cl,c2,c3).*pfarh(c1,c2,c3)+N.*(1-Ps).*(1-pfar(c1,c2,c3)).*pfah(cl,c2,c3)).*Vc;
VTsHORr(c1,c2,c3)=tsHORr(c1,c2,c3).*Vt+(N.*Ps.*phr(cl,c2,c3).*phrh(cl,c2,c3)+N.*Ps.*(1-phr(c1,c2,c3)).*phh(cl,c2,c3)+N.*(1-
Ps).*pfar(cl,c2,c3).*pfarh(cl,c2,c3)+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*pfah(cl,c2,c3)).*Vc;
VTsHOR(c1,c2,c3)=tsHOR(c1,c2,c3).*Vt+(N.*Ps.*phr(c1,c2,c3).*phrh(cl,c2,c3)+N.*Ps.*(1-phr(c1,c2,c3)).*phh(cl,c2,c3)+N.*(1-
Ps).*pfar(c1,c2,c3).*pfarh(cl,c2,c3)+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*pfah(cl,c2,c3)).*Vc;
VIs(c1,c2,c3)=VHs(cl,c2,c3)+VMs(cl,c2,c3)+VFAs(cl,c2,c3)+VCRs(cl,c2,c3)+VTs(cl,c2,c3);
VIsHORr(c1,c2,c3)=VHs(cl,c2,c3)+VMs(cl,c2,c3)+VFAs(cl,c2,c3)+VCRs(cl,c2,c3)+VTsHORr(c1,c2,c3);
VIsSHOR(c1,c2,c3)=VHs(c1,c2,c3)+VMs(cl,c2,c3)+VFAs(cl,c2,c3)+VCRs(cl,c2,c3)+VTsHOR(c1,c2,c3);

PHsR(c1,c2,c3)=phr(cl,c2,c3);

VHsR(c1,c2,c3)=N.*Ps.*PHsR(c1,c2,c3).*VH,;
FFAsR(c1,c2,c3)=N.*(1-Ps).*pfar(c1,c2,c3);

VFAsR(c1,c2,c3)=FFAsR(c1,c2,c3).*VFA,

tsR(c1,c2,c3)=tr;
VTsR(c1,c2,c3)=tsR(c1,c2,c3).*Vt+(N.*Ps.*phr(cl,c2,c3)+N.*(1-Ps).*pfar(cl,c2,c3)).*Vc;
VIsR(c1,c2,c3)=VHsR(c1,c2,c3)+VFAsR(c1,c2,c3)+VTsR(c1,c2,c3);

% the probabilities of the HO collaboration level were taken from the

% robot probabilities and the difference between the HO and the R

% collaboration levels is just on the times parameters.

PHsHO(c1,c2,c3)=phr(c1,c2,c3);

VHsHO(c1,c2,c3)=N.*Ps.*PHsHO(c1,c2,c3).*VH;

FFAsHO(c1,c2,c3)=N.*(1-Ps).*pfar(c1,c2,c3);

VFAsHO(c1,c2,c3)=FFAsHO(c1,c2,c3).*VFA;

tsHO(c1,c2,c3)=N.*Ps.*PHsHO(c1,c2,c3).*(tHh(c1,c2,c3)+tmotor)+FFAsHO(c1,c2,c3).*(tFAh(cl,c2,c3)+tmotor)...
+N.*Ps.*(1-PHsHO(c1,c2,c3)).*tMh(c1,c2,c3)+N.*(1-Ps).*(1-pfar(c1,c2,c3)).*tCRh(c1,c2,c3);

VTsHO(c1,c2,c3)=tsHO(c1,c2,c3).*Vt+(N.*Ps.*phr(c1,c2,c3)+N.*(1-Ps).*pfar(cl,c2,c3)).*Vc;

VIsHO(c1,c2,c3)=VHsHO(c1,c2,c3)+VFAsHO(c1,c2,c3)+VTsHO(c1,c2,c3);

%
%switching calculations
%

CL(Pscount,:)=[VIsHORr(c1,c2,c3) VISHOR(c1,c2,c3) VIsR(c1,c2,c3) VIsHO(c1,c2,c3)]; %values' matrix of different collaboration
levels

[C,CCLtemp]=max(CL(Pscount,:)); %C=value, CCLtemp=location

SV(1,Pscount)=[C]; %switch vector of best collaboration values for each row in CL

VIso=SV(1,Pscount);

VIscl=CL(Pscount,rr);

VIsc=CL(Pscount,CCL);

VlIscw=CL(Pscount,CCLw);

Vlscf=CL(Pscount,CCLf);

Vlscnew=CL(Pscount,CCLnew);

al='"HOR;
a2='HR’,
a3='R’;
ad="H";

switch CCLtemp

case 1
labell=al;

case 2
labell=a2;

case 3
labell=a3;

otherwise
labell=a4;

end

104



switch CCL
case 1
label2=al;
case 2
label2=a2;
case 3
label2=a3;
otherwise
label2=a4;
end

SVF(1,Pscount)=[CCLtemp];
%
%Switch objective fuction for ploting switch points
%

Vlswitchl(rr,Pscount)=(VIso-Vlscl); %+trespond*Vi+Vp*(ttemp+tmin-now)*(Vp*(ttemp+tmin-now)<0); %S1

VIswitch(rr,Pscount)=(VIso-Vlsc); % RLSA” for calculation

Vlswitch1(rr,Pscount)=(V1so-Vlsc);%”RLSA” for plot

VlIswitchw(rr,Pscount)=(VIso-VIscw); %”CTSA” for calculation

Vliswitchwl(rr,Pscount)=(VIso-Vlscw); % CTSA” for plot

Vliswitchfwl(rr,Pscount)=(VIso-VIscf)+Vp*(tlastswitchf+tmin-now)*(Vp*(tlastswitchf+tmin-now)<0); % CFSA” for plot

VIswitchfw(rr,Pscount)=(VIso-Vlscf); %”CFSA” for calculation

Vliswitchfnew1(rr,Pscount)=(V1so-VIscnew)+trespond*Vt+Vp*(tlastswitchnew-+tmin-now)*(Vp*(tlastswitchnew+tmin-now)<0);
%”’PRSA” for plot

VIswitchfnew(rr,Pscount)=(V1so-VIscnew); %”PRSA” for calculation

%

%
%switching algorithm
%

%”RLSA” algorithm

if CCLtemp~=CCL
tcurrent=now;
if tcurrent-tlastswitch>tmin %checking the frequency

disp(‘switch to');
disp(labell);
disp(‘from");
disp(label2);
CCL=CCLtemp
coY(rr,j)=C;
coX(rr,j)=Pscount;
coYs(rr,j)=VIswitch1(rr,Pscount); %for the switching objective function plot
tlastswitch=tcurrent;
=it
VIswitch(rr,Pscount)=-trespond*Vt; %updating VIswitch as optimal value after switching
else
disp(‘Collaboration level not optimal’);
end
end

%”CTSA” algorithm

if CCLtemp~=CCLw %optimization for switching
tcurrent=now;
if tcurrent-tlastswitchw>tmin %checking the frequency
if VIswitchw(rr,Pscount)>maxv
CCLw=CCLtemp;
coYw(l)=C;
coXw(rr,l)=Pscount;
coYsw(rr,I)=VIswitchwl(rr,Pscount); %for the switching objective function plot
tlastswitchw=tcurrent;
I=1+1;
VIswitchw(rr,Pscount)=-trespond*Vt; %updating VIswitch as optimal value after switching
end
end
end

%”CFSA” algorithm
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if CCLtemp~=CCLf %optimization for switching with frequency
tcurrent=now;
if VIswitchfw1(rr,Pscount)>maxv
CCLf=CCLtemp;
coXf(rr,i)=Pscount;
coYsfw(rr,i)=VIswitchfwl(rr,Pscount);
VIswitchfw(rr,Pscount)=-trespond*Vt-Vp*(tlastswitchf+tmin-now)*(Vp*(tlastswitchf+tmin-now)<0); %updating VI with response
time for switching
i=i+1;
tlastswitchf=tcurrent;
end
end

%”PRSA” algorithm

if CCLtemp~=CCLnew %optimization for switching with frequency
tcurrent=now;
if (tcurrent-tlastswitchnew>tmin)|(VIswitchfnew1(rr,Pscount)>maxv)
% if VIswitchfnew(Pscount)>maxv
bound2=Pscount;

BVF(boundl:bound2)=[CCLtemp];
newVF(bound1:bound2)=SVF(bound1:bound2)==BVF(boundl:bound2);
if sum(newVF(bound1:bound2))>((bound2-bound1)/2)

CCLnew=CCLtemp;

coXfnew(rr,p)=Pscount;
coYsfnew(rr,p)=VIswitchfnew1(rr,Pscount);

p=p+l;
boundl=Pscount+1;

Vlswitchfnew(rr,Pscount)=-trespond*Vt-Vp*(tlastswitchnew-+tmin-now)*(Vp*(tlastswitchnew+tmin-now)<0);
tlastswitchnew=tcurrent;
end
end
end

VI11(rr)=Vliswitchl(rr,Pscount)+V11(rr); %regular cost - S1
VI12(rr)=VIswitch(rr,Pscount)+VI2(rr); %cost with switch - “RLSA”
VI13(rr)=VIswitchw(rr,Pscount)+VI3(rr); %cost with switch and maxv filter - “CTSA”
VI14(rr)=VIswitchfw(rr,Pscount)+V14(rr); %cost with switch and maxv filter after frequency penalty - “CFSA”
VI5(rr)=VIswitchfnew(rr,Pscount)+VI15(rr); %cost with switch and maxv filter after frequency penalty and new algorithm -
“PRSA”

end %Pscount
end Yrr

%
%Figures
%

Figure(1)

subplot(1,2,1)
plot(Xaxis,CL(:,1),-',Xaxis,CL(:,2),--',Xaxis,CL(:,3),"",Xaxis,CL(:,4),"-.")
xlabel('time');

ylabel('V1Y);

title('Dynamic Switching');

set(findobj(gca, Type','line','Color','black’),'LineWidth',2);
legend('HOR','HR','R','H")

subplot(1,2,2)
plot(Xaxis,CL(:,1),-",Xaxis,CL(:,2),'--',Xaxis,CL(:,3),"", Xaxis,CL(:,4),-.", Xaxis,SV,'black’)
xlabel(‘time');

ylabel('VIY);

title('Dynamic Switching');

set(findobj(gca, Type','line’,'Color’,'black’),'LineWidth',3);

legend('HOR'HR','R",'H")

text(Xaxis(30),SV(30), \leftarrow Best CL','Horizontal Alignment','left','FontSize',20);

Figure(2)

subplot(1,2,1)
plot(Xaxis,CL(:,1),-',Xaxis,CL(:,2),--',Xaxis,CL(:,3),"",Xaxis,CL(:,4),-.")
xlabel('time");

ylabel('VI%);

title('Dynamic Switching with switch points');
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set(findobj(gca, Type','line','Color','black’),'LineWidth',2);
legend('HOR'HR',R",'H")
text(Xaxis(coX(2,find(coX(2,:)))),coY (2,find(coY(2,:))), \leftarrow switch point','FontSize',15,'color','r");

subplot(1,2,2)
plot(Xaxis,CL(:,1),-',Xaxis,CL(:,2),'--',Xaxis,CL(:,3),"",Xaxis,CL(:,4),-.", Xaxis,SV,'black’)
xlabel('time");

ylabel('VIY;

title('Dynamic Switching with switch points');

set(findobj(gca, Type','line','Color','black’),'LineWidth',3);

legend('HOR'HR',R",'H")

text(Xaxis(30),SV(30),\leftarrow Best CL','Horizontal Alignment','left','FontSize',20);
text(Xaxis(coX(2,find(coX(2,:)))),coY(2,find(coY(2,:))), \leftarrow switch point','FontSize',15,'color','r');

Figure(3)%the score if we stay always at the same collaboration level
plot(Xaxis,VIswitchl(1,:),'',Xaxis,VIswitchl(2,:),--', Xaxis,VIswitchl(3,:),":", Xaxis,VIswitchl(4,:),-.")
xlabel(‘time");

ylabel('VIswitch');

title('S1");

set(findobj(gca, Type','line','Color','black’),'LineWidth',2);

legend('HOR'HR','R",'H")

plotlvi=2;

Figure(4)

subplot(3,1,1)

plot(Xaxis,VIswitchl(plotlvl,:))

xlabel('time");

ylabel('VIswitch');

title(““RLSA™);

set(findobj(gca, Type','line’,'Color','black’),'LineWidth',2);
text(Xaxis(coX(plotlvl,find(coX(plotlvl,:)))),coYs(plotlvl,find(coYs(plotlvl,:))),'x','FontSize',20,'color','r','Horizontal Alignment','center");
grid on

subplot(3,1,2)
plot(Xaxis,VIswitchl(plotlvl,:)-ViIswitch(plotlvl,:))
grid on

xlabel(‘time");

ylabel('Gain’);

subplot(3,1,3)
plot(Xaxis,cumsum(VIswitchl(plotlvl,:)-Viswitch(plotivl,:)))
grid on

xlabel(‘time");

ylabel('Cumulative gain’);

Figure(5)

subplot(3,1,1)

plot(Xaxis,VIswitchwl(plotlvl,:),Xaxis,maxv,'--.k")

xlabel(‘time");

ylabel('VIswitch');

title("““CTSA™);

set(findobj(gca, Type','line’,'Color','black’),'LineWidth',2);
text(Xaxis(coXw(plotlvl,find(coXw(plotlvl,:)))),coYsw(plotlvl,find(coYsw(plotlvl,:))),'x','FontSize',20,'color','r','Horizontal Alignment','cent
er');

grid on

subplot(3,1,2)
plot(Xaxis,VIswitchl(plotlvl,:)-ViIswitchw(plotlvl,:))
grid on

xlabel('time");

ylabel(‘Gain’);

subplot(3,1,3)
plot(Xaxis,cumsum(VIswitchl(plotlvl,:)-ViIswitchw(plotlvl,:)))
grid on

xlabel('time");

ylabel('Cumulative gain');

Figure(6)

subplot(3,1,1)
plot(Xaxis,VIswitchfwl(plotlvl,:),Xaxis,maxv,'-- k')
xlabel('time");

ylabel('VIswitch');

title(““CFSA™);
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set(findobj(gca, Type','line','Color','black’),'LineWidth',2);
text(Xaxis(coXf(plotlvl,find(coXf(plotlvl,:)))),coYsfw(plotlvl,find(coYsfw(plotlvl,:))),’x','FontSize',20,'color','r','Horizontal Alignment','cente
r;

grid on

subplot(3,1,2)
plot(Xaxis,VIswitchl(plotlvl,:)-Viswitchfw(plotlvl,:))
grid on

xlabel('time');

ylabel('Gain’);

subplot(3,1,3)
plot(Xaxis,cumsum(VIswitchl(plotlvl,:)-VIswitchfw(plotivl,:)))
grid on

xlabel(‘time');

ylabel('Cumulative gain');

Figure(7)

subplot(3,1,1)

plot(Xaxis,VIswitchfnewl(plotlvl,:),Xaxis,maxv,"--.k')

xlabel('time');

ylabel('VIswitch');

title(““PRSA™);

set(findobj(gca, Type','line','Color','black’),'LineWidth',2);
text(Xaxis(coXfnew(plotlvl,find(coXfnew(plotlvl,:)))),coYsfnew(plotlvl,find(coYsfnew(plotlvl,:))),'x’,'FontSize',20,'color','r','Horizontal Alig
nment','center');

grid on

subplot(3,1,2)
plot(Xaxis,VIswitchl(plotlvl,:)-VIswitchfnew(plotlvl,:))
grid on

xlabel(‘time");

ylabel('Gain’);

subplot(3,1,3)
plot(Xaxis,cumsum(VIswitchl(plotlvl,:)-Viswitchfnew(plotlvl,:)))
grid on

xlabel(‘time");

ylabel('Cumulative gain’);

Figure(8)

subplot(2,1,1)

Xaxis=[12345];

Yaxis=[(VI1-VI2)' (VI1-VI3)' (VI1-VI4)' (VI1-VI5)T;
bar(Yaxis)

set(gca,'XTickLabel' ,{“RLSA™,““CTSA™, "““CFSA™""“PRSA™"})
xlabel('type of algorithm’);

ylabel('VI gain’);

title('Comparison of VI gains');

legend('HOR'HR',R",'H")

subplot(2,1,2)

Xaxis=[12 34 5],

Yaxis=[((VI1-V12)./VI1)' ((VI1-VI3)./VI1)' ((VI1-VI4)./V11) ((VI1-VI5)./VIL)T;
bar(Yaxis)

set(gca, XTickLabel', {“RLSA™,'“CTSA™", ““CFSA™,'“PRSA™})

xlabel('type of algorithm");

ylabel('VI gain in percentage’);

title('Comparison of VI gains');

legend('HOR'/HR',R",'H")
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Simulation for random uniform distribution of Ps:

%This program performs dynamic switching at random uniform distribution of Ps parameters
% the program calculates the hit and false alarm probabilities and the

% value of the operational cost according to betas and dtags

% This version will show the objective function values for all collaboration

% levels and for all betas combinations.

cle
close all
clear all
Psvector=rand(1,200);
for rr=1:4
=1
i=1;
1=1;
p=1;
CCL=rr %current collaboration level
CCLw=rT;
CCLf=rr;
CCLnews=rr;
VI1(rr)=0;
VI2(rr)=0;
VI13(rr)=0;
VI4(rr)=0;
VI5(rr)=0;
bound1=1;
Xaxis=linspace(0,1,200);
N=1000; % # of objects
Nstr=num2str(N);
tmin=0.0000005; %frequency of the switch
tlastswitch=now; %time of the last switch for “RLSA”
tlastswitchw=now; %time of the last switch for “CTSA”
tlastswitchf=now; %time of the last switch for “CFSA”
tlastswitchnew=now;%time of the last switch for “PRSA”
ttemp=now;
Vp=-5000000000; %penalty for frequency
minv=1000; %minimal value of VIswictch for switching
maxv=1500; %maximal value of Vlswictch for switching
VFA2H=10; %VFA/VH aspect ratio range
VAR=1;
VARstr=num2str(VFA2H(VAR)*10);
if VFA2H(VAR)==0.333
VARstr=num2str(3);
end

for Pscount=1:1:200;

Ps=Psvector(Pscount);
Psstr=num2str(Ps*100);

dtag=0.6;

dtag=dtag-1; %d' for human (second detector)
Dh=num2str(-dtag*10);

dtagR=0.1; %d' for robot

dtagR=dtagR-1;

Dr=num2str(-dtagR*10);

VH=10;

VM=5;

VCR=3;
VHstr=num2str(VH);
VFA=-VH.*VFA2H(VAR);
Vc=-2;
VCstr=num2str(-Vc);
Vt=-2000/3600;
Vistr=num2str(-Vt*3600);

trespond=1,;
tr=0.01;

c3=1;
Inbetar=0;
c2=1;
Inbetah=0;
cl=1;
Inbetarh=2;
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% the probabilities of the robot
Zsr(cl,c2,c3)=(-2.*Inbetar+dtagR."2)./(2.*dtagR);
Znr(c1,c2,c3)=(-2.*Inbetar-dtagR."2)./(2.*dtagR);
phr(cl,c2,c3)=1-normcdf(Zsr(cl,c2,c3));
pfar(c1,c2,c3)=1-normcdf(Znr(cl,c2,c3));
ratiol=pfar(c1,c2,c3)./phr(cl,c2,c3);
ratio2=(1-pfar(c1,c2,c3))./(1-phr(cl,c2,c3));

if Inbetar==0 & Inbetah==0 & Inbetarh==0
Zsrtest=(-2.*Inbetar+dtagR."2)./(2.*dtagR);
Znrtest=(-2.*Inbetar-dtagR.*2)./(2.*dtagR);
phrtest=1-normcdf(Zsr(c1,c2,c3));
pfartest=1-normcdf(Znr(c1,c2,c3));
ratiol=pfar(c1,c2,c3)./phr(cl,c2,c3);
ratio2=(1-pfar(c1,c2,c3))./(1-phr(cl,c2,c3));

end

%the optimal parameters of the robot if he was a single detector
betastar(c1,c2,c3)=((1-Ps)./Ps).*VFA2H(VAR); % calculating Beta*
ZsRstar(c1,c2,c3)=(-2.*log(betastar(c1,c2,c3))+dtagR."2)./(2.*dtagR);
ZnRstar(c1,c2,c3)=(-2.*log(betastar(c1,c2,c3))-dtagR."2)./(2.*dtagR);
phrstar(c1,c2,c3)=1-normcdf(ZsRstar(c1,c2,c3));
pfarstar(c1,c2,c3)=1-normcdf(ZnRstar(c1,c2,c3));

%the probabilities of the HO (second detector) for object that the
%robot didn't detect
ZsH(c1,c2,c3)=(-2.*Inbetah+dtag."2)./(2.*dtag);
ZnH(c1,c2,c3)=(-2.*Inbetah-dtag.”2)./(2.*dtag);
phh(c1,c2,c3)=1-normedf(ZsH(c1,c2,c3));
pfah(c1,c2,c3)=1-normcdf(ZnH(c1,c2,c3));

%the probabilities of the HO (second detector) for object that the robot
%already detected
ZsRH(c1,c2,c3)=(-2.*Inbetarh+dtag.”2)./(2.*dtag);
ZnRH(c1,c2,c3)=(-2.*Inbetarh-dtag.~2)./(2.*dtag);
phrh(cl,c2,c3)=1-normedf(ZsRH(c1,c2,c3));
pfarh(c1,c2,c3)=1-normcdf(ZnRH(c1,c2,c3));

% the time parameters

tHh(c1,c2,c3)=5;
tFAh(c1,c2,c3)=5;
tHrh(c1,c2,c3)=5;
tFArh(cl,c2,c3)=5;

tMh(c1,c2,c3)=5;
tCRh(c1,c2,c3)=5;
tMrh(c1,c2,c3)=5;
tCRrh(cl,c2,c3)=5;
tmotor=2;

PHs(c1,c2,c3)=phr(cl,c2,c3).*phrh(cl,c2,c3)+(1-phr(cl,c2,c3)).*phh(cl,c2,c3);
VHs(c1,c2,c3)=N.*Ps.*PHs(c1,c2,c3).*VH,;
PMs(c1,c2,c3)=phr(cl,c2,c3).*(1-phrh(cl,c2,c3))+(1-phr(cl,c2,c3)).*(1-phh(cl,c2,c3));
VMs(cl,c2,c3)=N.*Ps.*PMs(c1,c2,c3).*VM;
FFAs(c1,c2,c3)=N.*(1-Ps).*pfar(cl,c2,c3).*pfarh(cl,c2,c3)+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*pfah(cl,c2,c3);
VFAs(cl,c2,c3)=FFAs(c1,c2,c3).*VFA;
FCRs(c1,c2,c3)=N.*(1-Ps).*pfar(c1,c2,c3).*(1-pfarh(cl,c2,c3))+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*(1-pfah(cl,c2,c3));
VCRs(c1,c2,c3)=FCRs(c1,c2,c3).*VCR;

ts(c1,c2,c3)=N.*Ps.*phr(c1,c2,c3).*phrh(cl,c2,c3).*tHrh(c1,c2,c3)+N.*Ps.*(1-phr(c1,c2,c3)).*phh(cl,c2,c3).*tHh(c1,c2,c3)+N.*(1-
Ps).*pfar(c1,c2,c3).*pfarh(cl,c2,c3).*tFArh(cl,c2,c3)+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*pfah(cl,c2,c3).*tFAh(cl,c2,c3)...
+N.*Ps.*phr(c1,c2,c3).*(1-phrh(cl,c2,c3)).*tMrh(c1,c2,c3)+N.*Ps.*(1-phr(c1,c2,c3)).*(1-phh(cl,c2,c3)).*tMh(c1,c2,c3)+N.*(1-
Ps).*pfar(cl,c2,c3).*(1-pfarh(cl,c2,c3)).*tCRrh(c1,c2,c3)+N.*(1-Ps).*(1-pfar(c1,c2,c3)).*(1-pfah(cl,c2,c3)). *tCRh(c1,c2,c3)+tr;

tsHORr(c1,c2,c3)=N.*Ps.*phr(c1,c2,c3).*phrh(cl,c2,c3).*(tHrh(c1,c2,c3)+tmotor)+N.*Ps.*(1-
phr(c1,c2,c3)).*phh(cl,c2,c3).*(tHh(c1,c2,c3)+tmotor)+N.*(1-Ps).*pfar(c1,c2,c3).*pfarh(cl,c2,c3).*(tFArh(cl,c2,c3)+tmotor)+N.*(1-
Ps).*(1-pfar(c1,c2,c3)).*pfah(cl,c2,c3).*(tFAh(cl,c2,c3)+tmotor)...
+N.*Ps.*phr(c1,c2,c3).*(1-phrh(cl,c2,c3)).*tMrh(c1,c2,c3)+N.*Ps.*(1-phr(c1,c2,c3)).*(1-phh(cl,c2,c3)).*tMh(c1,c2,c3)+N.*(1-
Ps).*pfar(cl,c2,c3).*(1-pfarh(cl,c2,c3)).*tCRrh(c1,c2,c3)+N.*(1-Ps).*(1-pfar(c1,c2,c3)).*(1-pfah(cl,c2,c3)). *tCRh(c1,c2,c3)+tr;
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tsHOR(c1,c2,c3)=N.*Ps.*phr(c1,c2,c3).*phrh(c1,c2,c3).*tHrh(c1,c2,c3)+N.*Ps.*(1-
phr(c1,c2,c3)).*phh(cl,c2,c3).*(tHh(c1,c2,c3)+tmotor)+N.*(1-Ps).*pfar(cl,c2,c3).*pfarh(cl,c2,c3).*tFArh(cl,c2,c3)+N.*(1-Ps).*(1-
pfar(c1,c2,c3)).*pfah(cl,c2,c3).*(tFAh(cl,c2,c3)+tmotor)...
+N.*Ps.*phr(c1,c2,c3).*(1-phrh(cl,c2,c3)).*(tMrh(c1,c2,c3)+tmotor)+N.*Ps.*(1-phr(c1,c2,c3)).*(1-
phh(c1,c2,c3)).*tMh(c1,c2,c3)+N.*(1-Ps).*pfar(c1,c2,c3).*(1-pfarh(cl,c2,c3)).*(tCRrh(c1,c2,c3)+tmotor)+N.*(1-Ps).*(1-
pfar(c1,c2,c3)).*(1-pfah(cl,c2,c3)).*tCRh(c1,c2,c3)+tr;

Ndetect(c1,c2,c3)=(N.*Ps.*phr(cl,c2,c3).*phrh(cl,c2,c3)+N.*Ps.*(1-phr(cl,c2,c3)).*phh(cl,c2,c3)+N.*(1-
Ps).*pfar(c1,c2,c3).*pfarh(cl,c2,c3)+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*pfah(cl,c2,c3));
VTs(cl,c2,c3)=ts(c1,c2,c3).*Vt+(N.*Ps.*phr(cl,c2,c3).*phrh(cl,c2,c3)+N.*Ps.*(1-phr(cl,c2,c3)).*phh(cl,c2,c3)+N.*(1-
Ps).*pfar(c1,c2,c3).*pfarh(cl,c2,c3)+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*pfah(cl,c2,c3)).*Vc;
VTsHORr(c1,c2,c3)=tsHORr(c1,c2,c3).*Vt+(N.*Ps.*phr(c1,c2,c3).*phrh(cl,c2,c3)+N.*Ps.*(1-phr(cl,c2,c3)).*phh(cl,c2,c3)+N.*(1-
Ps).*pfar(cl,c2,c3).*pfarh(c1,c2,c3)+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*pfah(cl,c2,c3)).*Vc;
VTsHOR(c1,c2,c3)=tsHOR(c1,c2,c3).*Vt+(N.*Ps.*phr(c1,c2,c3).*phrh(cl,c2,c3)+N.*Ps.*(1-phr(cl,c2,c3)).*phh(cl,c2,c3)+N.*(1-
Ps).*pfar(c1,c2,c3).*pfarh(cl,c2,c3)+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*pfah(cl,c2,c3)).*Vc;
VIs(c1,c2,c3)=VHs(cl,c2,c3)+VMs(cl,c2,c3)+VFAs(cl,c2,c3)+VCRs(c1,c2,c3)+VTs(cl,c2,c3);
VIsHORr(c1,c2,c3)=VHs(cl,c2,c3)+VMs(cl,c2,c3)+VFAs(cl,c2,c3)+VCRs(c1,c2,c3)+VTsHORr(c1,c2,c3);
VIsHOR(c1,c2,c3)=VHs(c1,c2,c3)+VMs(cl,c2,c3)+VFAs(cl,c2,c3)+VCRs(cl,c2,c3)+VTsHOR(c1,c2,c3);

PHsR(c1,c2,c3)=phr(cl,c2,c3);

VHsR(c1,c2,c3)=N.*Ps.*PHsR(c1,c2,c3).*VH,;
FFAsR(c1,c2,c3)=N.*(1-Ps).*pfar(c1,c2,c3);

VFAsR(c1,c2,c3)=FFAsR(c1,c2,c3).*VFA,

tsR(c1,c2,c3)=tr;
VTsR(c1,c2,c3)=tsR(c1,c2,c3).*Vt+(N.*Ps.*phr(cl,c2,c3)+N.*(1-Ps).*pfar(cl,c2,c3)).*Vc;
VIsR(c1,c2,c3)=VHsR(c1,c2,c3)+VFAsR(c1,c2,c3)+VTsR(c1,c2,c3);

% the probabilities of the HO collaboration level were taken from the

% robot probabilities and the difference between the HO and the R

% collaboration levels is just on the times parameters.

PHsHO(c1,c2,c3)=phr(c1,c2,c3);

VHsHO(c1,c2,c3)=N.*Ps.*PHsHO(c1,c2,c3).*VH;

FFAsHO(c1,c2,c3)=N.*(1-Ps).*pfar(c1,c2,c3);

VFAsHO(c1,c2,c3)=FFAsHO(c1,c2,c3).*VFA;

tsHO(c1,¢2,c3)=N.*Ps.*PHsHO(c1,c2,c3).*(tHh(c1,c2,c3)+tmotor)+FFAsHO(c1,c2,c3).*(tFAh(cl,c2,c3)+tmotor)...
+N.*Ps.*(1-PHsHO(c1,c2,c3)).*tMh(c1,c2,c3)+N.*(1-Ps).*(1-pfar(c1,c2,c3)).*tCRh(c1,c2,c3);

VTsHO(c1,c2,c3)=tsHO(c1,c2,c3).*Vt+(N.*Ps.*phr(c1,c2,c3)+N.*(1-Ps).*pfar(cl,c2,c3)).*Vc;

VIsHO(c1,c2,c3)=VHsHO(c1,c2,c3)+VFAsHO(c1,c2,c3)+VTsHO(c1,c2,c3);

%
%switching calculations
%

CL(Pscount,:)=[VIsHORr(c1,c2,c3) VISHOR(c1,c2,c3) VIsR(c1,c2,c3) VIsHO(c1,c2,c3)]; %values' matrix of different collaboration
levels

[C,CCLtemp]=max(CL(Pscount,:)); %C=value, CCLtemp=location

SV(1,Pscount)=[C]; %switch vector of best collaboration values for each row in CL

VI1s0=SV(1,Pscount);

VIscl=CL(Pscount,rr);

VIsc=CL(Pscount,CCL);

VlIscw=CL(Pscount,CCLw);

Vlscf=CL(Pscount,CCLf);

Vlscnew=CL(Pscount,CCLnew);

al="HOR;,
a2='HR’,
a3='R
a4="H,

switch CCLtemp

case 1
labell=al;

case 2
labell=a2;

case 3
labell=a3;

otherwise
labell=a4;

end

switch CCL
case 1
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label2=al;
case 2

label2=a2;
case 3

label2=a3;
otherwise

label2=a4;
end

SVF(1,Pscount)=[CCLtemp];
%
%Switch objective fuction for ploting switch points
%

Vlswitchl(rr,Pscount)=(VIso-Vlscl); %+trespond*Vi+Vp*(ttemp+tmin-now)*(Vp*(ttemp+tmin-now)<0); %S1

VlIswitch(rr,Pscount)=(VIso-Vlsc); % RLSA” for calculation

Vlswitch1(rr,Pscount)=(VIso-Vlsc);%”RLSA” for plot

VIswitchw(rr,Pscount)=(VIso-VIscw); %”CTSA” for calculation

Vliswitchwl(rr,Pscount)=(VIso-Vlscw); %”CTSA” for plot

Vliswitchfwi(rr,Pscount)=(VIso-VIscf)+Vp*(tlastswitchf+tmin-now)*(Vp*(tlastswitchf+tmin-now)<0); %”CFSA” for plot

Vliswitchfw(rr,Pscount)=(VIso-Vlscf); %”CFSA” for calculation

Vliswitchfnew1(rr,Pscount)=(V1so-VIscnew)+trespond*Vt+Vp*(tlastswitchnew-+tmin-now)*(Vp*(tlastswitchnew+tmin-now)<0);
%”’PRSA” for plot

VIswitchfnew(rr,Pscount)=(V1so-VIscnew); %”PRSA” for calculation

%

%
%switching algorithm
%

%”RLSA” algorithm

if CCLtemp~=CCL
tcurrent=now;
if tcurrent-tlastswitch>tmin %checking the frequency

disp(‘switch to');
disp(labell);
disp(‘from");
disp(label2);
CCL=CCLtemp
coY(rr,j)=C;
coX(rr,j)=Pscount;
coYs(rr,j)=VIswitch1(rr,Pscount); %for the switching objective function plot
tlastswitch=tcurrent;
=it
VIswitch(rr,Pscount)=-trespond*Vt; %updating VIswitch as optimal value after switching
else
disp(‘Collaboration level not optimal’);
end
end

%”CTSA” algorithm

if CCLtemp~=CCLw %optimization for switching
tcurrent=now;
if tcurrent-tlastswitchw>tmin %checking the frequency
if VIswitchw(rr,Pscount)>maxv
CCLw=CCLtemp;
coYw(l)=C;
coXw(rr,l)=Pscount;
coYsw(rr,I)=VIswitchwl(rr,Pscount); %for the switching objective function plot
tlastswitchw=tcurrent;
1=1+1,;
VlIswitchw(rr,Pscount)=-trespond*Vt; %updating VIswitch as optimal value after switching
end
end
end

%”CFSA” algorithm
if CCLtemp~=CCLf %optimization for switching with frequency

tcurrent=now;
if VIswitchfw1(rr,Pscount)>maxv
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CCLf=CCLtemp;
coXf(rr,i)=Pscount;
coYsfw(rr,i)=VIswitchfwl(rr,Pscount);
VIswitchfw(rr,Pscount)=-trespond*Vt-Vp*(tlastswitchf+tmin-now)*(Vp*(tlastswitchf+tmin-now)<0); %updating VI with response
time for switching
i=i+1;
tlastswitchf=tcurrent;
end
end

%”PRSA” algorithm

if CCLtemp~=CCLnew %optimization for switching with frequency
tcurrent=now;
if (tcurrent-tlastswitchnew>tmin)|(VIswitchfnew1(rr,Pscount)>maxv)
% if VIswitchfnew(Pscount)>maxv
bound2=Pscount;

BVF(boundl:bound2)=[CCLtemp];
newVF(boundl1:bound2)=SVF(bound1:bound2)==BVF(boundl:bound2);
if sum(newVF(bound1:bound2))>((bound2-bound1)/2)

CCLnew=CCLtemp;

coXfnew(rr,p)=Pscount;
coYsfnew(rr,p)=VIswitchfnew1(rr,Pscount);

p=p+l;
boundl=Pscount+1;

Vlswitchfnew(rr,Pscount)=-trespond*Vt-Vp*(tlastswitchnew-+tmin-now)*(Vp*(tlastswitchnew+tmin-now)<0);
tlastswitchnew=tcurrent;
end
end
end

VI11(rr)=Vliswitchl(rr,Pscount)+V11(rr); %regular cost - S1
VI12(rr)=VIswitch(rr,Pscount)+VI2(rr); %cost with switch - “RLSA”
VI13(rr)=VlIswitchw(rr,Pscount)+V13(rr); %cost with switch and maxv filter - “CTSA”
VI14(rr)=VIswitchfw(rr,Pscount)+V14(rr); %cost with switch and maxv filter after frequency penalty - “CFSA”
VI5(rr)=VIswitchfnew(rr,Pscount)+VI15(rr); %cost with switch and maxv filter after frequency penalty and new algorithm -
“PRSA”

end %Pscount
end Yrr

%
%Figures
%

Figure(1)

subplot(1,2,1)
plot(Xaxis,CL(:,1),-",Xaxis,CL(:,2),"--',Xaxis,CL(:,3),"",Xaxis,CL(:,4),-.")
xlabel(‘time');

ylabel('V1Y);

title('Dynamic Switching');

set(findobj(gca, Type','line','Color','black’),'LineWidth',2);
legend('HOR','HR','R','H")

subplot(1,2,2)
plot(Xaxis,CL(:,1),-",Xaxis,CL(:,2),"--',Xaxis,CL(:,3),"", Xaxis,CL(:,4),-.", Xaxis,SV,'black’)
xlabel(‘time');

ylabel('VIY);

title('Dynamic Switching');

set(findobj(gca, Type','line’,'Color','black’),'LineWidth',3);

legend('HOR'HR','R",'H")

text(Xaxis(30),SV(30), \leftarrow Best CL','Horizontal Alignment','left','FontSize',20);

Figure(2)

subplot(1,2,1)

plot(Xaxis,CL(:,1),-',Xaxis,CL(:,2),--',Xaxis,CL(:,3),"",Xaxis,CL(:,4),-.")

xlabel('time");

ylabel('VI%);

title('Dynamic Switching with switch points');

set(findobj(gca, Type','line','Color','black’),'LineWidth',2);

legend('HOR',HR','R",'H")

text(Xaxis(coX(2,find(coX(2,:)))),coY(2,find(coY(2,:))), \leftarrow switch point','FontSize',15,'color','r");
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subplot(1,2,2)
plot(Xaxis,CL(:,1),-',Xaxis,CL(:,2),'--',Xaxis,CL(:,3),"', Xaxis,CL(:,4),-.", Xaxis,SV,'black’)
xlabel('time");

ylabel('VIY;

title('Dynamic Switching with switch points');

set(findobj(gca, Type','line','Color','black’),'LineWidth',3);

legend('HOR'HR',R",'H")

text(Xaxis(30),SV(30),\leftarrow Best CL','Horizontal Alignment','left','FontSize',20);
text(Xaxis(coX(2,find(coX(2,:)))),coY(2,find(caY(2,:))), \leftarrow switch point','FontSize',15,'color','r');

Figure(3)%the score if we stay always at the same collaboration level
plot(Xaxis,VIswitchl(1,:),'',Xaxis,VIswitchl(2,:),--', Xaxis,VIswitchl(3,:),":', Xaxis,VIswitchl(4,:),-.")
xlabel(‘time");

ylabel('VIswitch');

title('S1");

set(findobj(gca, Type','line','Color','black’),'LineWidth',2);

legend('HOR'HR',R",'H")

plotlvi=2;

Figure(4)

subplot(3,1,1)

plot(Xaxis,VIswitchl(plotlvl,:))

xlabel('time");

ylabel('VIswitch');

title(““RLSA™);

set(findobj(gca, Type','line','Color’,'black’),'LineWidth',2);
text(Xaxis(coX(plotlvl,find(coX(plotlvl,:)))),coYs(plotlvl,find(coYs(plotlvl,:))),’x','FontSize',20,'color','r','Horizontal Alignment','center");
grid on

subplot(3,1,2)
plot(Xaxis,VIswitchl(plotlvl,:)-ViIswitch(plotlvl,:))
grid on

xlabel(‘time");

ylabel('Gain’);

subplot(3,1,3)
plot(Xaxis,cumsum(VIswitchl(plotlvl,:)-Viswitch(plotivl,:)))
grid on

xlabel(‘time");

ylabel('Cumulative gain’);

Figure(5)

subplot(3,1,1)

plot(Xaxis,VIswitchwl(plotlvl,:),Xaxis,maxv,'--.K")

xlabel(‘time");

ylabel('VIswitch');

title(““CTSA™);

set(findobj(gca, Type','line','Color','black’),'LineWidth',2);
text(Xaxis(coXw(plotlvl,find(coXw(plotlvl,:)))),coYsw(plotlvl,find(coYsw(plotlvl,:))),’x','FontSize',20,'color','r','Horizontal Alignment','cent
er');

grid on

subplot(3,1,2)
plot(Xaxis,VIswitchl(plotlvl,:)-VIswitchw(plotlvl,:))
grid on

xlabel('time");

ylabel('Gain’);

subplot(3,1,3)
plot(Xaxis,cumsum(VIswitchl(plotlvl,:)-ViIswitchw(plotlvl,:)))
grid on

xlabel('time");

ylabel(‘Cumulative gain’);

Figure(6)

subplot(3,1,1)

plot(Xaxis,VIswitchfwl(plotlvl,:),Xaxis,maxv,'-- k')

xlabel('time");

ylabel('VIswitch');

title(““CFSA™);

set(findobj(gca, Type','line','Color','black’),'LineWidth',2);

text(Xaxis(coXf(plotlvl,find(coXf(plotlvl,:)))),coY sfw(plotlvl,find(coYsfw(plotlvl,:))),'x','FontSize',20,'color','r','Horizontal Alignment', 'cente
r;
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grid on

subplot(3,1,2)
plot(Xaxis,VIswitchl(plotlvl,:)-Viswitchfw(plotlvl,:))
grid on

xlabel('time');

ylabel('Gain’);

subplot(3,1,3)
plot(Xaxis,cumsum(VIswitchl(plotlvl,:)-VIswitchfw(plotivl,:)))
grid on

xlabel('time');

ylabel('Cumulative gain');

Figure(7)

subplot(3,1,1)

plot(Xaxis,VIswitchfnewl(plotlvl,:),Xaxis,maxv,'"--.k')

xlabel(‘time');

ylabel('VIswitch');

title(““PRSA™);

set(findobj(gca, Type','line','Color’,'black’),'LineWidth',2);
text(Xaxis(coXfnew(plotlvl,find(coXfnew(plotlvl,:)))),coYsfnew(plotlvl,find(coYsfnew(plotlvl,:))),'x’,'FontSize',20,'color','r','Horizontal Alig
nment','center’);

grid on

subplot(3,1,2)
plot(Xaxis,VIswitchl(plotlvl,:)-ViIswitchfnew(plotlvl,:))
grid on

xlabel(‘time");

ylabel('Gain’);

subplot(3,1,3)
plot(Xaxis,cumsum(VIswitchl(plotlvl,:)-Viswitchfnew(plotlvl,:)))
grid on

xlabel(‘time");

ylabel('Cumulative gain’);

Figure(8)

subplot(2,1,1)

Xaxis=[12345];

Yaxis=[(VI1-VI2)' (VI1-VI3)' (VI1-VI4)' (VI1-VI5)T;
bar(Yaxis)

set(gca,'XTickLabel' ,{“RLSA™,““CTSA™, ““CFSA™""“PRSA™"})
xlabel('type of algorithm’);

ylabel('VI gain’);

title('Comparison of VI gains');

legend('HOR'HR',R",'H")

subplot(2,1,2)

Xaxis=[12 3 45];

Yaxis=[((VI1-V12)./VI1)' ((VI1-VI3)./VI1)' ((VI1-VI4)./V11) ((VI1-VI5)./VIL)T;
bar(Yaxis)

set(gca, XTickLabel', {“RLSA™,'“CTSA™", "““CFSA™,'“PRSA™})

xlabel('type of algorithm");

ylabel('VI gain in percentage’);

title('Comparison of VI gains');

legend('HOR'HR',R",'H")
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Simulation for ascending normal distribution of Ps:

%This program performs dynamic switching at ascending normal distribution of Ps parameters
% the program calculates the hit and false alarm probabilities and the

% value of the operational cost according to betas and dtags

% This version will show the objective function values for all collaboration

% levels and for all betas combinations.

cle
close all
clear all
Psvector=randn(1,200);
ctmp=max(abs(Psvector));
Psvector=Psvector./(ctmp*2);
Psvector=abs(Psvector+0.49);
Psvector=sort(Psvector);
for rr=1:4
=L
i=1;
=1,
p=1;
CCL-=rr %current collaboration level
CCLws=rr;
CCLf=rr;
CCLnews=rr;
VI1(rr)=0;
VI12(rr)=0;
VI3(rr)=0;
VI4(rr)=0;
VI15(rr)=0;
bound1=1,;
Xaxis=linspace(0,1,200);
N=1000; % # of objects
Nstr=num2str(N);
tmin=0.0000005; %frequency of the switch
tlastswitch=now; %time of the last switch for “RLSA”
tlastswitchw=now; %time of the last switch for “CTSA”
tlastswitchf=now; %time of the last switch for “CFSA”
tlastswitchnew=now;%time of the last switch for “PRSA”
ttemp=now;
Vp=-5000000000; %penalty for frequency
minv=1000; %minimal value of VIswictch for switching
maxv=1500; %maximal value of VIswictch for switching
VFA2H=10; %VFA/VH aspect ratio range
VAR=1,
VARstr=num2str(VFA2H(VAR)*10);
if VFA2H(VAR)==0.333
VARstr=numa2str(3);
end

for Pscount=1:1:200;

Ps=Psvector(Pscount);
Psstr=num2str(Ps*100);

dtag=0.6;

dtag=dtag-1; %d' for human (second detector)
Dh=num2str(-dtag*10);

dtagR=0.1; %d' for robot

dtagR=dtagR-1;

Dr=num2str(-dtagR*10);

VH=10;

VM=5;

VCR=3;
VHstr=num2str(VH);
VFA=-VH.*VFA2H(VAR);
Vc=-2;
VCstr=num2str(-\/c);
Vt=-2000/3600;
Vistr=num2str(-Vt*3600);

trespond=1;
tr=0.01;

c3=1;
Inbetar=0;
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c2=1;
Inbetah=0;
cl=1;
Inbetarh=2;

% the probabilities of the robot
Zsr(cl,c2,c3)=(-2.*Inbetar+dtagR."2)./(2.*dtagR);
Znr(cl,c2,c3)=(-2.*Inbetar-dtagR."2)./(2.*dtagR);
phr(c1,c2,c3)=1-normcdf(Zsr(c1,c2,c3));
pfar(c1,c2,c3)=1-normcdf(Znr(cl,c2,c3));
ratiol=pfar(c1,c2,c3)./phr(cl,c2,c3);
ratio2=(1-pfar(c1,c2,c3))./(1-phr(cl,c2,c3));

if Inbetar==0 & Inbetah==0 & Inbetarh==0
Zsrtest=(-2.*Inbetar+dtagR."2)./(2.*dtagR);
Znrtest=(-2.*Inbetar-dtagR."2)./(2.*dtagR);
phrtest=1-normcdf(Zsr(c1,c2,c3));
pfartest=1-normcdf(Znr(c1,c2,c3));
ratiol=pfar(c1,c2,c3)./phr(cl,c2,c3);
ratio2=(1-pfar(c1,c2,c3))./(1-phr(cl,c2,c3));

end

%the optimal parameters of the robot if he was a single detector

betastar(c1,c2,c3)=((1-Ps)./Ps).*VFA2H(VAR); % calculating Beta*
ZsRstar(c1,c2,c3)=(-2.*log(betastar(c1,c2,c3))+dtagR."2)./(2.*dtagR);
ZnRstar(c1,c2,c3)=(-2.*log(betastar(c1,c2,c3))-dtagR."2)./(2.*dtagR);

phrstar(c1,c2,c3)=1-normcdf(ZsRstar(c1,c2,c3));
pfarstar(c1,c2,c3)=1-normcdf(ZnRstar(c1,c2,c3));

%the probabilities of the HO (second detector) for object that the
%robot didn't detect
ZsH(c1,c2,c3)=(-2.*Inbetah+dtag."2)./(2.*dtag);
ZnH(c1,c2,c3)=(-2.*Inbetah-dtag."2)./(2.*dtag);
phh(c1,c2,c3)=1-normcdf(ZsH(c1,c2,c3));
pfah(c1,c2,c3)=1-normcdf(ZnH(c1,c2,c3));

%the probabilities of the HO (second detector) for object that the robot

%already detected
ZsRH(c1,c2,c3)=(-2.*Inbetarh+dtag.”2)./(2.*dtag);
ZnRH(c1,c2,c3)=(-2.*Inbetarh-dtag."2)./(2.*dtag);
phrh(cl,c2,c3)=1-normcdf(ZsRH(c1,c2,c3));
pfarh(c1,c2,c3)=1-normcdf(ZnRH(c1,c2,c3));

% the time parameters

tHh(c1,c2,c3)=5;
tFAh(c1,c2,c3)=5;
tHrh(c1,c2,c3)=5;
tFArh(cl,c2,c3)=5;

tMh(c1,c2,c3)=5;
tCRh(c1,c2,c3)=5;
tMrh(c1,c2,c3)=5;
tCRrh(c1,c2,c3)=5;
tmotor=2;

PHs(c1,c2,c3)=phr(cl,c2,c3).*phrh(cl,c2,c3)+(1-phr(cl,c2,c3)).*

VHs(c1,c2,c3)=N.*Ps.*PHs(c1,c2,c3).*VH;

PMs(c1,c2,c3)=phr(c1,c2,c3).*(1-phrh(cl,c2,c3))+(1-phr(cl,c2,c3)).*(1-phh(cl,c2,c3));

VMs(cl,c2,c3)=N.*Ps.*PMs(c1,c2,c3).*VM;

FFAs(c1,c2,c3)=N.*(1-Ps).*pfar(cl,c2,c3).*pfarh(cl,c2,c3)+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*pfah(cl,c2,c3);

VFAs(cl,c2,c3)=FFAs(c1,c2,c3).*VFA;

FCRs(c1,c2,c3)=N.*(1-Ps).*pfar(c1,c2,c3).*(1-pfarh(cl,c2,c3))+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*(1-pfah(cl,c2,c3));

VCRs(c1,c2,c3)=FCRs(c1,c2,c3).*VCR;

ts(c1,c2,c3)=N.*Ps.*phr(c1,c2,c3).*phrh(cl,c2,c3).*tHrh(c1,c2,c3)+N.*Ps.*(1-phr(c1,c2,c3)).*phh(cl,c2,c3).*tHh(c1,c2,c3)+N.*(1-
Ps).*pfar(c1,c2,c3).*pfarh(cl,c2,c3).*tFArh(cl,c2,c3)+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*pfah(cl,c2,c3).*tFAh(cl,c2,c3)...
+N.*Ps.*phr(c1,c2,c3).*(1-phrh(cl,c2,c3)).*tMrh(c1,c2,c3)+N.*Ps.*(1-phr(c1,c2,c3)).*(1-phh(c1,c2,c3)).*tMh(c1,c2,c3)+N.*(1-
Ps).*pfar(c1,c2,c3).*(1-pfarh(cl,c2,c3)).*tCRrh(c1,c2,c3)+N.*(1-Ps).*(1-pfar(c1,c2,c3)).*(1-pfah(cl,c2,c3)). *tCRh(c1,c2,c3)+tr;

tsHORr(c1,¢c2,c3)=N.*Ps.*phr(c1,c2,c3).*phrh(c1,c2,c3).*(tHrh(c1,c2,c3)+tmotor)+N.*Ps.*(1-
phr(c1,c2,c3)).*phh(cl,c2,c3).*(tHh(c1,c2,c3)+tmotor)+N.*(1-Ps).*

Ps).*(1-pfar(cl,c2,c3)).*pfah(cl,c2,c3).*(tFAh(cl,c2,c3)+tmotor)...
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+N.*Ps.*phr(c1,c2,c3).*(1-phrh(c1,c2,c3)).*tMrh(c1,c2,c3)+N.*Ps.*(1-phr(c1,c2,c3)).*(1-phh(cl,c2,c3)).*tMh(c1,c2,c3)+N.*(1-
Ps).*pfar(c1,c2,c3).*(1-pfarh(cl,c2,c3)).*tCRrh(cl,c2,c3)+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*(1-pfah(cl,c2,c3)).*tCRh(c1,c2,c3)+r;

tsHOR(c1,c2,c3)=N.*Ps.*phr(c1,c2,c3).*phrh(c1,c2,c3).*tHrh(c1,c2,c3)+N.*Ps.*(1-
phr(c1,c2,c3)).*phh(c1,c2,c3).*(tHh(c1,c2,c3)+tmotor)+N.*(1-Ps).*pfar(c1,c2,c3).*pfarh(cl,c2,c3).*tFArh(cl,c2,c3)+N.*(1-Ps).*(1-
pfar(c1,c2,c3)).*pfah(cl,c2,c3).*(tFAh(cl,c2,c3)+tmotor)...
+N.*Ps.*phr(c1,c2,c3).*(1-phrh(cl,c2,c3)).*(tMrh(c1,c2,c3)+tmotor)+N.*Ps.*(1-phr(c1,c2,c3)).*(1-
phh(c1,c2,c3)).*tMh(c1,c2,c3)+N.*(1-Ps).*pfar(c1,c2,c3).*(1-pfarh(cl,c2,c3)).*(tCRrh(c1,c2,c3)+tmotor)+N.*(1-Ps).*(1-
pfar(c1,c2,c3)).*(1-pfah(cl,c2,c3)).*tCRh(c1,c2,c3)+tr;

Ndetect(c1,c2,c3)=(N.*Ps.*phr(c1,c2,c3).*phrh(cl,c2,c3)+N.*Ps.*(1-phr(cl,c2,c3)).*phh(cl,c2,c3)+N.*(1-
Ps).*pfar(c1,c2,c3).*pfarh(cl,c2,c3)+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*pfah(cl,c2,c3));
VTs(cl,c2,c3)=ts(c1,c2,c3).*Vt+(N.*Ps.*phr(cl,c2,c3).*phrh(cl,c2,c3)+N.*Ps.*(1-phr(cl,c2,c3)).*phh(cl,c2,c3)+N.*(1-
Ps).*pfar(cl,c2,c3).*pfarh(c1,c2,c3)+N.*(1-Ps).*(1-pfar(c1,c2,c3)).*pfah(cl,c2,c3)).*Vc;
VTsHORr(c1,c2,c3)=tsHORr(c1,c2,c3).*Vt+(N.*Ps.*phr(cl,c2,c3).*phrh(cl,c2,c3)+N.*Ps.*(1-phr(cl,c2,c3)).*phh(cl,c2,c3)+N.*(1-
Ps).*pfar(c1,c2,c3).*pfarh(c1,c2,c3)+N.*(1-Ps).*(1-pfar(c1,c2,c3)).*pfah(cl,c2,c3)).*Vc;
VTsHOR(c1,c2,c3)=tsHOR(c1,c2,c3).*Vt+(N.*Ps.*phr(c1,c2,c3).*phrh(cl,c2,c3)+N.*Ps.*(1-phr(c1,c2,c3)).*phh(cl,c2,c3)+N.*(1-
Ps).*pfar(c1,c2,c3).*pfarh(cl,c2,c3)+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*pfah(cl,c2,c3)).*Vc;
VIs(c1,c2,c3)=VHs(cl,c2,c3)+VMs(cl,c2,c3)+VFAs(cl,c2,c3)+VCRs(cl,c2,c3)+VTs(cl,c2,c3);
VIsHORr(c1,c2,c3)=VHs(cl,c2,c3)+VMs(cl,c2,c3)+VFAs(cl,c2,c3)+VCRs(cl,c2,c3)+VTsHORr(c1,c2,c3);
VIsSHOR(c1,c2,c3)=VHs(c1,c2,c3)+VMs(cl,c2,c3)+VFAs(cl,c2,c3)+VCRs(cl,c2,c3)+VTsHOR(c1,c2,c3);

PHsR(c1,c2,c3)=phr(cl,c2,c3);

VHsR(c1,c2,c3)=N.*Ps.*PHsR(c1,c2,c3).*VH,;
FFAsR(c1,c2,c3)=N.*(1-Ps).*pfar(c1,c2,c3);

VFAsR(c1,c2,c3)=FFAsR(c1,c2,c3).*VFA,

tsR(c1,c2,c3)=tr;
VTsR(c1,c2,c3)=tsR(c1,c2,c3).*Vt+(N.*Ps.*phr(cl,c2,c3)+N.*(1-Ps).*pfar(cl,c2,c3)).*Vc;
VIsR(c1,c2,c3)=VHsR(c1,c2,c3)+VFAsR(c1,c2,c3)+VTsR(c1,c2,c3);

% the probabilities of the HO collaboration level were taken from the

% robot probabilities and the difference between the HO and the R

% collaboration levels is just on the times parameters.

PHsHO(c1,c2,c3)=phr(c1,c2,c3);

VHsHO(c1,c2,c3)=N.*Ps.*PHsHO(c1,c2,c3).*VH;

FFAsHO(c1,c2,c3)=N.*(1-Ps).*pfar(c1,c2,c3);

VFAsHO(c1,c2,c3)=FFAsHO(c1,c2,c3).*VFA;

tsHO(c1,¢2,c3)=N.*Ps.*PHsHO(c1,c2,c3).*(tHh(c1,c2,c3)+tmotor)+FFAsHO(c1,c2,c3).*(tFAh(cl,c2,c3)+tmotor)...
+N.*Ps.*(1-PHsHO(c1,c2,c3)).*tMh(c1,c2,c3)+N.*(1-Ps).*(1-pfar(c1,c2,c3)).*tCRh(c1,c2,c3);

VTsHO(c1,c2,c3)=tsHO(c1,c2,c3).*Vt+(N.*Ps.*phr(c1,c2,c3)+N.*(1-Ps).*pfar(cl,c2,c3)).*Vc;

VIsHO(c1,c2,c3)=VHsHO(c1,c2,c3)+VFAsHO(c1,c2,c3)+VTsHO(c1,c2,c3);

%
%switching calculations
%

CL(Pscount,:)=[VIsHORr(c1,c2,c3) VISHOR(c1,c2,c3) VIsR(c1,c2,c3) VIsHO(c1,c2,c3)]; %values' matrix of different collaboration
levels

[C,CCLtemp]=max(CL(Pscount,:)); %C=value, CCLtemp=location

SV(1,Pscount)=[C]; %switch vector of best collaboration values for each row in CL

VIso=SV(1,Pscount);

VIscl=CL(Pscount,rr);

VIsc=CL(Pscount,CCL);

VlIscw=CL(Pscount,CCLw);

Vlscf=CL(Pscount,CCLf);

Vlscnew=CL(Pscount,CCLnew);

al='"HOR;
a2='HR’,
a3='R’;
ad="H";

switch CCLtemp

case 1
labell=al;

case 2
labell=a2;

case 3
labell=a3;

otherwise
labell=a4;

end
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switch CCL
case 1
label2=al;
case 2
label2=a2;
case 3
label2=a3;
otherwise
label2=a4;
end

SVF(1,Pscount)=[CCLtemp];
%
%Switch objective fuction for ploting switch points
%

Vlswitchl(rr,Pscount)=(VIso-Vlscl); %+trespond*Vi+Vp*(ttemp+tmin-now)*(Vp*(ttemp+tmin-now)<0); %S1

VIswitch(rr,Pscount)=(VIso-Vlsc); % RLSA” for calculation

Vlswitch1(rr,Pscount)=(VIso-Vlsc);%”RLSA” for plot

VlIswitchw(rr,Pscount)=(VIso-VIscw); %”CTSA” for calculation

Vliswitchwl(rr,Pscount)=(VIso-Vlscw); % CTSA” for plot

Vliswitchfwi(rr,Pscount)=(VIso-VIscf)+Vp*(tlastswitchf+tmin-now)*(Vp*(tlastswitchf+tmin-now)<0); % CFSA” for plot

Vliswitchfw(rr,Pscount)=(VIso-Vlscf); %”CFSA” for calculation

Vliswitchfnew1(rr,Pscount)=(V1so-VIscnew)+trespond*Vt+Vp*(tlastswitchnew-+tmin-now)*(Vp*(tlastswitchnew+tmin-now)<0);
%”’PRSA” for plot

VIswitchfnew(rr,Pscount)=(V1so-VIscnew); %”PRSA” for calculation

%

%
%switching algorithm
%

%”RLSA” algorithm

if CCLtemp~=CCL
tcurrent=now;
if tcurrent-tlastswitch>tmin %checking the frequency

disp(‘switch to');
disp(labell);
disp(‘from");
disp(label2);
CCL=CCLtemp
coY(rr,j)=C;
coX(rr,j)=Pscount;
coYs(rr,j)=VIswitch1(rr,Pscount); %for the switching objective function plot
tlastswitch=tcurrent;
=it
VIswitch(rr,Pscount)=-trespond*Vt; %updating VIswitch as optimal value after switching
else
disp(‘Collaboration level not optimal’);
end
end

%”CTSA” algorithm

if CCLtemp~=CCLw %optimization for switching
tcurrent=now;
if tcurrent-tlastswitchw>tmin %checking the frequency
if VIswitchw(rr,Pscount)>maxv
CCLw=CCLtemp;
coYw(l)=C;
coXw(rr,l)=Pscount;
coYsw(rr,I)=VIswitchwl(rr,Pscount); %for the switching objective function plot
tlastswitchw=tcurrent;
I=1+1;
VIswitchw(rr,Pscount)=-trespond*Vt; %updating VIswitch as optimal value after switching
end
end
end

%”CFSA” algorithm
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if CCLtemp~=CCLf %optimization for switching with frequency
tcurrent=now;
if VIswitchfw1(rr,Pscount)>maxv
CCLf=CCLtemp;
coXf(rr,i)=Pscount;
coYsfw(rr,i)=VIswitchfwl(rr,Pscount);
VIswitchfw(rr,Pscount)=-trespond*Vt-Vp*(tlastswitchf+tmin-now)*(Vp*(tlastswitchf+tmin-now)<0); %updating VI with response
time for switching
i=i+1;
tlastswitchf=tcurrent;
end
end

%”PRSA” algorithm

if CCLtemp~=CCLnew %optimization for switching with frequency
tcurrent=now;
if (tcurrent-tlastswitchnew>tmin)|(VIswitchfnew1(rr,Pscount)>maxv)
% if VIswitchfnew(Pscount)>maxv
bound2=Pscount;

BVF(boundl:bound2)=[CCLtemp];
newVF(boundl1:bound2)=SVF(bound1:bound2)==BVF(boundl:bound2);
if sum(newVF(bound1:bound2))>((bound2-bound1)/2)

CCLnew=CCLtemp;

coXfnew(rr,p)=Pscount;
coYsfnew(rr,p)=VIswitchfnew1(rr,Pscount);

p=p+l;
boundl=Pscount+1;

Vlswitchfnew(rr,Pscount)=-trespond*Vt-Vp*(tlastswitchnew-+tmin-now)*(Vp*(tlastswitchnew+tmin-now)<0);
tlastswitchnew=tcurrent;
end
end
end

VI11(rr)=Vliswitchl(rr,Pscount)+V11(rr); %regular cost - S1
VI12(rr)=VIswitch(rr,Pscount)+VI2(rr); %cost with switch - “RLSA”
VI13(rr)=VIswitchw(rr,Pscount)+VI3(rr); %cost with switch and maxv filter - “CTSA”
VI14(rr)=VIswitchfw(rr,Pscount)+V14(rr); %cost with switch and maxv filter after frequency penalty - “CFSA”
VI5(rr)=VIswitchfnew(rr,Pscount)+VI15(rr); %cost with switch and maxv filter after frequency penalty and new algorithm -
“PRSA”

end %Pscount
end Yrr

%
%Figures
%

Figure(1)

subplot(1,2,1)
plot(Xaxis,CL(:,1),-',Xaxis,CL(:,2),--',Xaxis,CL(:,3),"",Xaxis,CL(:,4),"-.")
xlabel('time');

ylabel('V1Y);

title('Dynamic Switching');

set(findobj(gca, Type','line','Color','black’),'LineWidth',2);
legend('HOR','HR','R','H")

subplot(1,2,2)
plot(Xaxis,CL(:,1),-",Xaxis,CL(:,2),'--',Xaxis,CL(:,3),"", Xaxis,CL(:,4),-.", Xaxis,SV,'black’)
xlabel(‘time');

ylabel('VIY);

title('Dynamic Switching');

set(findobj(gca, Type','line’,'Color’,'black’),'LineWidth',3);

legend('HOR'HR','R",'H")

text(Xaxis(30),SV(30), \leftarrow Best CL','Horizontal Alignment','left','FontSize',20);

Figure(2)

subplot(1,2,1)
plot(Xaxis,CL(:,1),-',Xaxis,CL(:,2),--',Xaxis,CL(:,3),"",Xaxis,CL(:,4),-.")
xlabel('time");

ylabel('VI%);

title('Dynamic Switching with switch points');

120



set(findobj(gca, Type','line','Color','black’),'LineWidth',2);
legend('HOR'HR',R",'H")
text(Xaxis(coX(2,find(coX(2,:)))),coY(2,find(coY(2,:))), \leftarrow switch point','FontSize',15,'color','r");

subplot(1,2,2)
plot(Xaxis,CL(:,1),-',Xaxis,CL(:,2),'--',Xaxis,CL(:,3),"",Xaxis,CL(:,4),-.", Xaxis,SV,'black’)
xlabel('time");

ylabel('VIY;

title('Dynamic Switching with switch points');

set(findobj(gca, Type','line','Color','black’),'LineWidth',3);

legend('HOR'HR',R",'H")

text(Xaxis(30),SV(30),\leftarrow Best CL','Horizontal Alignment','left','FontSize',20);
text(Xaxis(coX(2,find(coX(2,:)))),coY(2,find(coY(2,:))), \leftarrow switch point','FontSize',15,'color','r');

Figure(3)%the score if we stay always at the same collaboration level
plot(Xaxis,VIswitchl(1,:),'',Xaxis,VIswitchl(2,:),--',Xaxis,VIswitchl(3,:),":", Xaxis,VIswitchl(4,:),-.")
xlabel(‘time");

ylabel('VIswitch');

title('S1");

set(findobj(gca, Type','line','Color','black’),'LineWidth',2);

legend('HOR'HR','R",'H")

plotlvi=2;

Figure(4)

subplot(3,1,1)

plot(Xaxis,VIswitchl(plotlvl,:))

xlabel('time");

ylabel('VIswitch');

title(““RLSA™);

set(findobj(gca, Type','line','Color','black’),'LineWidth',2);
text(Xaxis(coX(plotlvl,find(coX(plotlvl,:)))),coYs(plotlvl,find(coYs(plotlvl,:))),'x','FontSize',20,'color','r','Horizontal Alignment','center");
grid on

subplot(3,1,2)
plot(Xaxis,VIswitchl(plotlvl,:)-ViIswitch(plotlvl,:))
grid on

xlabel(‘time");

ylabel('Gain’);

subplot(3,1,3)
plot(Xaxis,cumsum(VIswitchl(plotlvl,:)-Viswitch(plotivl,:)))
grid on

xlabel(‘time");

ylabel('Cumulative gain’);

Figure(5)

subplot(3,1,1)

plot(Xaxis,VIswitchwl(plotlvl,:),Xaxis,maxv,'--.k")

xlabel(‘time");

ylabel('VIswitch');

title("““CTSA™);

set(findobj(gca, Type','line’,'Color','black’),'LineWidth',2);
text(Xaxis(coXw(plotlvl,find(coXw(plotlvl,:)))),coYsw(plotlvl,find(coYsw(plotlvl,:))),'x','FontSize',20,'color','r','Horizontal Alignment','cent
er');

grid on

subplot(3,1,2)
plot(Xaxis,VIswitchl(plotlvl,:)-ViIswitchw(plotlvl,:))
grid on

xlabel('time");

ylabel(‘Gain’);

subplot(3,1,3)
plot(Xaxis,cumsum(VIswitchl(plotlvl,:)-ViIswitchw(plotlvl,:)))
grid on

xlabel('time");

ylabel('Cumulative gain');

Figure(6)

subplot(3,1,1)
plot(Xaxis,VIswitchfwl(plotlvl,:),Xaxis,maxv,'-- k')
xlabel('time");

ylabel('VIswitch');

title(““CFSA™);
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set(findobj(gca, Type','line','Color','black’),'LineWidth',2);

text(Xaxis(coXf(plotlvl,find(coXf(plotlvl,:)))),coYsfw(plotlvl,find(coY sfw(plotlvl,:))),'x','FontSize',20,'color','r','Horizontal Alignment','cente
r;

grid on

subplot(3,1,2)
plot(Xaxis,VIswitchl(plotlvl,:)-Viswitchfw(plotlvl,:))
grid on

xlabel('time');

ylabel('Gain’);

subplot(3,1,3)
plot(Xaxis,cumsum(VIswitchl(plotlvl,:)-VIswitchfw(plotlvl,:)))
grid on

xlabel(‘time');

ylabel('Cumulative gain');

Figure(7)

subplot(3,1,1)

plot(Xaxis,VIswitchfnewl(plotlvl,:),Xaxis,maxv,"--.k)

xlabel('time');

ylabel('VIswitch');

title(““PRSA™);

set(findobj(gca, Type','line','Color’,'black’),'LineWidth',2);
text(Xaxis(coXfnew(plotlvl,find(coXfnew(plotlvl,:)))),coYsfnew(plotlvl,find(coYsfnew(plotlvl,:))),'x’,'FontSize',20,'color','r','Horizontal Alig
nment','center');

grid on

subplot(3,1,2)
plot(Xaxis,VIswitchl(plotlvl,:)-VIswitchfnew(plotlvl,:))
grid on

xlabel(‘time");

ylabel('Gain’);

subplot(3,1,3)
plot(Xaxis,cumsum(VIswitchl(plotlvl,:)-Viswitchfnew(plotlvl,:)))
grid on

xlabel(‘time");

ylabel('Cumulative gain’);

Figure(8)

subplot(2,1,1)

Xaxis=[12345];

Yaxis=[(VI1-VI2)' (VI1-VI3)' (VI1-VI4)' (VI1-VI5)T;
bar(Yaxis)

set(gca,'XTickLabel' ,{“RLSA™,““CTSA™, "““CFSA™""“PRSA™"})
xlabel('type of algorithm’);

ylabel('VI gain’);

title('Comparison of VI gains');

legend('HOR'HR',R",'H")

subplot(2,1,2)

Xaxis=[12 34 5],

Yaxis=[((VI1-VI12)./VI1)' ((VI1-VI3)./VI1)' ((VI1-VI4)./V11) ((VI1-VI5)./VIL)T;
bar(Yaxis)

set(gca, XTickLabel', {“RLSA™,'“CTSA™", ““CFSA™,'“PRSA™})

xlabel('type of algorithm");

ylabel('VI gain in percentage’);

title('Comparison of VI gains');

legend('HOR'/HR',R",'H")
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Simulation for Ps domain:

% This program performs dynamic switching at normal distribution of Ps parameters
% in Ps domain instead of time domain

% the program calculates the hit and false alarm probabilities and the

% value of the operational cost according to betas and dtags

% This version will show the objective function values for all collaboration

% levels and for all betas combinations.

cle

close all

clear all

Psvector=randn(1,200);%random normal
ctmp=max(abs(Psvector));
Psvector=Psvector./(ctmp*2);
Psvector=abs(Psvector+0.49);
[sorted_Psvector,INDEX]=sort(Psvector);

for rr=1:4

i=1;

i=1,

1=1;

p=1;

CCL-=rr %current collaboration level

CCLw-=rT,;

CCLf=rr;

CCLnews=rr,;

VI1(rr)=0;

VI2(rr)=0;

VI3(rr)=0;

VI14(rr)=0;

VI5(rr)=0;

bound1=1,;

Xaxis=linspace(0,1,200);

N=1000; % # of objects

Nstr=num2str(N);

tmin=0.0000005; %frequency of the switch

tlastswitch=now; %time of the last switch

tlastswitchw=now; %time of the last switch

tlastswitchf=now;

tlastswitchnew=now;

ttemp=now;

VVp=-5000000000; %penalty for frequency

minv=1000; %minimal value of VIswictch for switching

maxv=1500; %maximal value of VIswictch for switching

VFA2H=[5]; %[0.05:0.05:1,1:0.1:10,10:1:100]; %VFA/VH aspect ratio range

VAR=1;

VARstr=num2str(VFA2H(VAR)*10);

if VFA2H(VAR)==0.333
VARstr=num2str(3);

end

%format short

for Pscount=1:1:200;
Ps=Psvector(Pscount);

Psstr=num2str(Ps*100);

dtag=0.7;

%for dh=1:1:40

dtag=dtag-1; %[-0.1:-0.1:-4]; % the range of d' for human (second detector)
Dh=num2str(-dtag*10);

dtagR=0.3;

%dr=1,

dtagR=dtagR-1; %[-0.1:-0.1:-4]%-2

Dr=num2str(-dtagR*10);

%Ilnbetar=1 %[-3:0.1:3]

VH=10;

VM=5;

VCR=3;
VHstr=num2str(VH);
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VFA=-VH.*VFA2H(VAR);
Vc=-2;
VCstr=num2str(-\/c);
Vt=-2000/3600;
Vistr=num2str(-Vt*3600);

trespond=1;
tr=0.01;

c3=1;
Inbetar=0;
c2=1;
Inbetah=0;

cl=1;
Inbetarh=2;

% the probabilities of the robot
Zsr(c1,c2,c3)=(-2.*Inbetar+dtagR."2)./(2.*dtagR);
Znr(c1,c2,c3)=(-2.*Inbetar-dtagR."2)./(2.*dtagR);
phr(c1,c2,c3)=1-normcdf(Zsr(c1,c2,c3));
pfar(cl,c2,c3)=1-normcdf(Znr(c1,c2,c3));
ratiol=pfar(c1,c2,c3)./phr(cl,c2,c3);
ratio2=(1-pfar(c1,c2,c3))./(1-phr(cl,c2,c3));

if Inbetar==0 & Inbetah==0 & Inbetarh==0
Zsrtest=(-2.*Inbetar+dtagR."2)./(2.*dtagR);
Znrtest=(-2.*Inbetar-dtagR.*2)./(2.*dtagR);
phrtest=1-normcdf(Zsr(c1,c2,c3));
pfartest=1-normcdf(Znr(c1,c2,c3));
ratiol=pfar(c1,c2,c3)./phr(cl,c2,c3);
ratio2=(1-pfar(c1,c2,c3))./(1-phr(cl,c2,c3));

end

%the optimal parameters of the robot if he was a single detector
betastar(c1,c2,c3)=((1-Ps)./Ps).*VFA2H(VAR); % calculating Beta*
ZsRstar(c1,c2,c3)=(-2.*log(betastar(c1,c2,c3))+dtagR.”2)./(2.*dtagR);
ZnRstar(c1,c2,c3)=(-2.*log(betastar(c1,c2,c3))-dtagR."2)./(2.*dtagR);
phrstar(c1,c2,c3)=1-normcdf(ZsRstar(c1,c2,c3));
pfarstar(c1,c2,c3)=1-normcdf(ZnRstar(c1,c2,c3));

%the probabilities of the HO (second detector) for object that the
%robot didn't detect
ZsH(c1,c2,c3)=(-2.*Inbetah+dtag.*2)./(2.*dtag);
ZnH(c1,c2,c3)=(-2.*Inbetah-dtag.*2)./(2.*dtag);
phh(c1,c2,c3)=1-normcdf(ZsH(c1,c2,c3));
pfah(c1,c2,c3)=1-normcdf(ZnH(c1,c2,c3));

%the probabilities of the HO (second detector) for object that the robot
%already detected
ZsRH(c1,c2,c3)=(-2.*Inbetarh+dtag.*2)./(2.*dtag);
ZnRH(c1,c2,c3)=(-2.*Inbetarh-dtag."2)./(2.*dtag);
phrh(cl,c2,c3)=1-normcdf(ZsRH(c1,c2,c3));
pfarh(c1,c2,c3)=1-normcdf(ZnRH(c1,c2,c3));

% the time parameters

tHh(c1,c2,c3)=5;
tFAh(c1,c2,c3)=5;
tHrh(c1,c2,c3)=5;
tFArh(c1,c2,c3)=5;

tMh(c1,c2,c3)=5;
tCRh(c1,c2,c3)=5;
tMrh(c1,c2,c3)=5;
tCRrh(cl,c2,c3)=5;
tmotor=2;

PHs(c1,c2,c3)=phr(c1,c2,c3).*phrh(c1,c2,c3)+(1-phr(cl,c2,c3)).*phh(cl,c2,c3);
VHs(c1,c2,c3)=N.*Ps.*PHs(c1,c2,c3).*VH;
PMs(c1,c2,c3)=phr(cl,c2,c3).*(1-phrh(cl,c2,c3))+(1-phr(cl,c2,c3)).*(1-phh(cl,c2,c3));
VMs(c1,c2,c3)=N.*Ps.*PMs(c1,c2,c3).*VM;
FFAs(c1,c2,c3)=N.*(1-Ps).*pfar(cl,c2,c3).*pfarh(cl,c2,c3)+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*pfah(cl,c2,c3);
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VFAs(cl,c2,c3)=FFAs(c1,c2,c3).*VFA;
FCRs(c1,c2,c3)=N.*(1-Ps).*pfar(c1,c2,c3).*(1-pfarh(cl,c2,c3))+N.*(1-Ps).*(1-pfar(c1,c2,c3)).*(1-pfah(cl,c2,c3));
VCRs(c1,c2,c3)=FCRs(c1,c2,c3).*VCR;

ts(c1,c2,c3)=N.*Ps.*phr(c1,c2,c3).*phrh(cl,c2,c3).*tHrh(c1,c2,c3)+N.*Ps.*(1-phr(cl,c2,c3)).*phh(cl,c2,c3).*tHh(cl,c2,c3)+N.*(1-
Ps).*pfar(c1,c2,c3).*pfarh(cl,c2,c3).*tFArh(cl,c2,c3)+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*pfah(cl,c2,c3).*tFAh(cl,c2,c3)...
+N.*Ps.*phr(c1,c2,c3).*(1-phrh(cl,c2,c3)).*tMrh(c1,c2,c3)+N.*Ps.*(1-phr(c1,c2,c3)).*(1-phh(c1,c2,c3)).*tMh(c1,c2,c3)+N.*(1-
Ps).*pfar(c1,c2,c3).*(1-pfarh(cl,c2,c3)).*tCRrh(cl,c2,c3)+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*(1-pfah(cl,c2,c3)).*tCRh(c1,c2,c3)+tr;

tsHORrr(c1,¢c2,c3)=N.*Ps.*phr(c1,c2,c3).*phrh(c1,c2,c3).*(tHrh(c1,c2,c3)+tmotor)+N.*Ps.*(1-
phr(c1,c2,c3)).*phh(cl,c2,c3).*(tHh(c1,c2,c3)+tmotor)+N.*(1-Ps).*pfar(cl,c2,c3).*pfarh(cl,c2,c3).*(tFArh(cl,c2,c3)+tmotor)+N.*(1-
Ps).*(1-pfar(c1,c2,c3)).*pfah(cl,c2,c3).*(tFAh(cl,c2,c3)+tmotor)...
+N.*Ps.*phr(c1,c2,c3).*(1-phrh(cl,c2,c3)).*tMrh(c1,c2,c3)+N.*Ps.*(1-phr(c1,c2,c3)).*(1-phh(c1,c2,c3)).*tMh(c1,c2,c3)+N.*(1-
Ps).*pfar(c1,c2,c3).*(1-pfarh(cl,c2,c3)).*tCRrh(c1,c2,c3)+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*(1-pfah(cl,c2,c3)).*tCRh(cl,c2,c3)+r;

tsHOR(c1,c2,c3)=N.*Ps.*phr(c1,c2,c3).*phrh(c1,c2,c3).*tHrh(c1,c2,c3)+N.*Ps.*(1-
phr(c1,c2,c3)).*phh(cl,c2,c3).*(tHh(c1,c2,c3)+tmotor)+N.*(1-Ps).*pfar(c1,c2,c3).*pfarh(cl,c2,c3).*tFArh(cl,c2,c3)+N.*(1-Ps).*(1-
pfar(c1,c2,c3)).*pfah(cl,c2,c3).*(tFAh(cl,c2,c3)+tmotor)...
+N.*Ps.*phr(c1,c2,c3).*(1-phrh(cl,c2,c3)).*(tMrh(c1,c2,c3)+tmotor)+N.*Ps.*(1-phr(c1,c2,c3)).*(1-
phh(c1,c2,c3)).*tMh(c1,c2,c3)+N.*(1-Ps).*pfar(c1,c2,c3).*(1-pfarh(cl,c2,c3)).*(tCRrh(c1,c2,c3)+tmotor)+N.*(1-Ps).*(1-
pfar(c1,c2,c3)).*(1-pfah(cl,c2,c3)).*tCRh(c1,c2,c3)+tr;

Ndetect(c1,c2,c3)=(N.*Ps.*phr(c1,c2,c3).*phrh(c1,c2,c3)+N.*Ps.*(1-phr(c1,c2,c3)).*phh(cl,c2,c3)+N.*(1-
Ps).*pfar(c1,c2,c3).*pfarh(cl,c2,c3)+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*pfah(cl,c2,c3));
VTs(cl,c2,c3)=ts(c1,c2,c3).*Vt+(N.*Ps.*phr(cl,c2,c3).*phrh(cl,c2,c3)+N.*Ps.*(1-phr(cl,c2,c3)).*phh(cl,c2,c3)+N.*(1-
Ps).*pfar(cl,c2,c3).*pfarh(c1,c2,c3)+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*pfah(cl,c2,c3)).*Vc;
VTsHORr(c1,c2,c3)=tsHORr(c1,c2,c3).*Vt+(N.*Ps.*phr(cl,c2,c3).*phrh(cl,c2,c3)+N.*Ps.*(1-phr(cl,c2,c3)).*phh(cl,c2,c3)+N.*(1-
Ps).*pfar(cl,c2,c3).*pfarh(c1,c2,c3)+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*pfah(cl,c2,c3)).*Vc;
VTsHOR(c1,c2,c3)=tsHOR(c1,c2,c3).*Vt+(N.*Ps.*phr(c1,c2,c3).*phrh(cl,c2,c3)+N.*Ps.*(1-phr(c1,c2,c3)).*phh(cl,c2,c3)+N.*(1-
Ps).*pfar(c1,c2,c3).*pfarh(cl,c2,c3)+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*pfah(cl,c2,c3)).*Vc;
VIs(c1,c2,c3)=VHs(cl,c2,c3)+VMs(cl,c2,c3)+VFAs(cl,c2,c3)+VCRs(cl,c2,c3)+VTs(cl,c2,c3);
VIsHORr(c1,c2,c3)=VHs(cl,c2,c3)+VMs(cl,c2,c3)+VFAs(cl,c2,c3)+VCRs(cl,c2,c3)+VTsHORr(c1,c2,c3);
VIsHOR(c1,c2,c3)=VHs(c1,c2,c3)+VMs(cl,c2,c3)+VFAs(cl,c2,c3)+VCRs(cl,c2,c3)+VTsHOR(c1,c2,c3);

PHsR(c1,c2,c3)=phr(cl,c2,c3);

VHsR(c1,c2,c3)=N.*Ps.*PHsR(c1,c2,c3).*VH,;
FFAsR(c1,c2,c3)=N.*(1-Ps).*pfar(c1,c2,c3);

VFAsR(c1,c2,c3)=FFAsR(c1,c2,c3).*VFA,

tsR(c1,c2,c3)=tr;
VTsR(c1,c2,c3)=tsR(c1,c2,c3).*Vt+(N.*Ps.*phr(cl,c2,c3)+N.*(1-Ps).*pfar(cl,c2,c3)).*Vc;
VIsR(c1,c2,c3)=VHsR(c1,c2,c3)+VFAsR(c1,c2,c3)+VTsR(c1,c2,c3);

% the probabilities of the HO collaboration level were taken from the

% robot probabilities and the difference between the HO and the R

% collaboration levels is just on the times parameters.

PHsHO(c1,c2,c3)=phr(c1,c2,c3);

VHsHO(c1,c2,c3)=N.*Ps.*PHsHO(c1,c2,c3).*VH,;

FFAsHO(c1,c2,c3)=N.*(1-Ps).*pfar(c1,c2,c3);

VFAsHO(c1,c2,c3)=FFAsHO(c1,c2,c3).*VFA;

tsHO(c1,¢2,c3)=N.*Ps.*PHsHO(c1,c2,c3).*(tHh(c1,c2,c3)+tmotor)+FFAsHO(c1,c2,c3).*(tFAh(cl,c2,c3)+tmotor)...
+N.*Ps.*(1-PHsHO(c1,c2,c3)).*tMh(c1,c2,c3)+N.*(1-Ps).*(1-pfar(c1,c2,c3)).*tCRh(c1,c2,c3);

VTsHO(c1,c2,c3)=tsHO(c1,c2,c3).*Vt+(N.*Ps.*phr(c1,c2,c3)+N.*(1-Ps).*pfar(cl,c2,c3)).*Vc;

VIsHO(c1,c2,c3)=VHsHO(c1,c2,c3)+VFAsHO(c1,c2,c3)+VTsHO(c1,c2,c3);

%
%switching calculations
%

CL(Pscount,:)=[VIsHORr(c1,c2,c3) VISHOR(c1,c2,c3) VIsR(c1,c2,c3) VIsHO(c1,c2,c3)]; %values' matrix of different collaboration
levels

[C,CCLtemp]=max(CL(Pscount,:)); %C=value, CCLtemp=location

SV(1,Pscount)=[C]; %switch vector of best collaboration values for each row in CL

VIso=SV(1,Pscount);

VIscl=CL(Pscount,rr);

VIsc=CL(Pscount,CCL);

VIscw=CL (Pscount,CCLwy);

VIscf=CL(Pscount,CCLf);

VIscnew=CL (Pscount,CCLnew);

al="HOR';
a2="HR’;
a3='R’;
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ad="H;

switch CCLtemp

case 1
labell=al;

case 2
labell=a2;

case 3
labell=a3;

otherwise
labell=a4;

end

switch CCL
case 1
label2=a1;
case 2
label2=a2;
case 3
label2=a3;
otherwise
label2=a4;
end

SVF(1,Pscount)=[CCLtemp];
%
%Switch objective fuction for ploting switch points
%

Vlswitchl(rr,Pscount)=(VIso-Vlscl); %+trespond*Vi+Vp*(ttemp+tmin-now)*(Vp*(ttemp+tmin-now)<0); %S1

VIswitch(rr,Pscount)=(VIso-Vlsc); % RLSA” for calculation

Vlswitch1(rr,Pscount)=(VIso-Vlsc);%”RLSA” for plot

VIswitchw(rr,Pscount)=(VIso-VIscw); %”CTSA” for calculation

Vliswitchwl(rr,Pscount)=(VIso-Vlscw); %”CTSA” for plot

Vliswitchfwl(rr,Pscount)=(VIso-VIscf)+Vp*(tlastswitchf+tmin-now)*(Vp*(tlastswitchf+tmin-now)<0); % CFSA” for plot

Vliswitchfw(rr,Pscount)=(VIso-Vlscf); % CFSA” for calculation

Vliswitchfnew1(rr,Pscount)=(V1so-VIscnew)+trespond*Vt+Vp*(tlastswitchnew-+tmin-now)*(Vp*(tlastswitchnew+tmin-now)<0);
%”’PRSA” for plot

VIswitchfnew(rr,Pscount)=(V1so-VIscnew); %”PRSA” for calculation

%

%
%switching algorithm
%

%”RLSA” algorithm

if CCLtemp~=CCL
tcurrent=now;
if tcurrent-tlastswitch>tmin %checking the frequency

disp(‘'switch to');
disp(labell);
disp(‘from");
disp(label2);
CCL=CCLtemp
coY(rr,j)=C;
coX(rr,j)=Pscount;
coYs(rr,j)=VIswitch1(rr,Pscount); %for the switching objective function plot
tlastswitch=tcurrent;
=i
Vlswitch(rr,Pscount)=-trespond*Vt; %updating VIswitch as optimal value after switching
else
disp(‘Collaboration level not optimal’);
end
end
%”CTSA” algorithm
if CCLtemp~=CCLw %optimization for switching

tcurrent=now;
if tcurrent-tlastswitchw>tmin %checking the frequency
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if VIswitchw(rr,Pscount)>maxv
CCLw=CCLtemp;

coYw(l)=C;
coXw(rr,l)=Pscount;
coYsw(rr,I)=VIswitchwl(rr,Pscount); %for the switching objective function plot
tlastswitchw=tcurrent;
1=1+1;

VIswitchw(rr,Pscount)=-trespond*Vt; %updating VIswitch as optimal value after switching

end
end
end

%”CFSA”

if CCLtemp~=CCLf %optimization for switching with frequency
tcurrent=now;

if VIswitchfw1(rr,Pscount)>maxv
CCLf=CCLtemp;

%coYw(i)=C;
coXf(rr,i)=Pscount;
coYsfw(rr,i)=VIswitchfwl(rr,Pscount);
VIswitchfw(rr,Pscount)=-trespond*Vt-Vp*(tlastswitchf+tmin-now)*(Vp*(tlastswitchf+tmin-now)<0); %updating VI with response
time for switching
i=i+1;
tlastswitchf=tcurrent;
end
end

%”PRSA”

if CCLtemp~=CCLnew %optimization for switching with frequency
tcurrent=now;
if (tcurrent-tlastswitchnew>tmin)|(VIswitchfnew1(rr,Pscount)>maxv)
% if VIswitchfnew(Pscount)>maxv
bound2=Pscount;

BVF(boundl:bound2)=[CCLtemp];
newVF(bound1:bound2)=SVF(bound1:bound2)==BVF(boundl:bound2);
if sum(newVF(bound1:bound2))>((bound2-bound1)/2)

CCLnew=CCLtemp;

coXfnew(rr,p)=Pscount;
coYsfnew(rr,p)=VIswitchfnew1(rr,Pscount);

p=p+l;
bound1=Pscount+1;

VlIswitchfnew(rr,Pscount)=-trespond*Vt-Vp*(tlastswitchnew-+tmin-now)*(Vp*(tlastswitchnew-+tmin-now)<0);
tlastswitchnew=tcurrent;

end
end
end

VI1(rr)=Viswitchl(rr,Pscount)+VI1(rr); %regular cost - S1

VI12(rr)=Vlswitch(rr,Pscount)+VI12(rr); %cost with switch - “RLSA”

VI13(rr)=VIswitchw(rr,Pscount)+V13(rr); %cost with switch and maxv filter - “CTSA”
VI14(rr)=VIswitchfw(rr,Pscount)+V14(rr); %cost with switch and maxv filter after frequency penalty - “CFSA”

VI5(rr)=VIswitchfnew(rr,Pscount)+V15(rr); %cost with switch and maxv filter after frequency penalty and new algorithm -
“PRSA”

end %Pscount
end Yrr
%
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%Figures
%

Figure(1)

subplot(1,2,1)
plot(sorted_Psvector,CL(:,1),sorted_Psvector,CL(:,2),sorted_Psvector,CL(:,3),sorted_Psvector,CL(:,4))
xlabel('time");

ylabel('VIY;

title('Dinamic Switching');

set(findobj(gca, Type','line','Color','black’),'LineWidth',2);
text(sorted_Psvector(10),CL(10,1),\leftarrow HOR','Horizontal Alignment','left','FontSize',10);
text(sorted_Psvector(15),CL(15,2),\leftarrow HR','FontSize',10);
text(sorted_Psvector(5),CL(5,3),\leftarrow R','FontSize',10);
text(sorted_Psvector(20),CL(20,4),\leftarrow H','FontSize',10);

subplot(1,2,2)
plot(sorted_Psvector,CL(:,1),sorted_Psvector,CL(:,2),sorted_Psvector,CL(:,3),sorted_Psvector,CL(:,4),sorted_Psvector,SV,'black’)
xlabel(‘time');

ylabel('VIY);

title('Dinamic Switching');

set(findobj(gca, Type','line,'Color','black’),'LineWidth',2);
text(sorted_Psvector(10),CL(10,1),\leftarrow HOR','Horizontal Alignment','left','FontSize',10);
text(sorted_Psvector(15),CL(15,2),\leftarrow HR','FontSize',10);
text(sorted_Psvector(5),CL(5,3), \leftarrow R','FontSize',10);
text(sorted_Psvector(20),CL(20,4),\leftarrow H','FontSize',10);
text(sorted_Psvector(30),SV(30),\leftarrow Best CL','Horizontal Alignment','left','FontSize',20);

Figure(2)

subplot(1,2,1)
plot(sorted_Psvector,CL(:,1),sorted_Psvector,CL(:,2),sorted_Psvector,CL(:,3),sorted_Psvector,CL(:,4))
xlabel('Ps");

ylabel('VIY);

title('Dinamic Switching with switch points');

set(findobj(gca, Type','line','Color','black’),'LineWidth',2);
text(sorted_Psvector(10),CL(10,1),\leftarrow HOR','Horizontal Alignment','left','FontSize',10);
text(sorted_Psvector(15),CL(15,2),\leftarrow HR','FontSize',10);
text(sorted_Psvector(5),CL(5,3), \leftarrow R','FontSize',10);
text(sorted_Psvector(20),CL(20,4),\leftarrow H','FontSize',10);
text(sorted_Psvector(coX(2,find(coX(2,:)))),coY(2,find(coY(2,))), \leftarrow switch point','FontSize',15,'color','r");

subplot(1,2,2)
plot(sorted_Psvector,CL(:,1),sorted_Psvector,CL(:,2),sorted_Psvector,CL(:,3),sorted_Psvector,CL(:,4),sorted_Psvector,SV,'black’)
xlabel('Ps");

ylabel('VIY);

title('Dinamic Switching with switch points');

set(findobj(gca, Type','line','Color','black’),'LineWidth',2);

text(sorted_Psvector(10),CL(10,1),\leftarrow HOR','Horizontal Alignment','left','FontSize',10);
text(sorted_Psvector(15),CL(15,2),\leftarrow HR','FontSize',10);

text(sorted_Psvector(5),CL(5,3), \leftarrow R','FontSize',10);

text(sorted_Psvector(20),CL(20,4),\leftarrow H','FontSize',10);

text(sorted_Psvector(30),SV(30),\leftarrow Best CL','Horizontal Alignment','left','FontSize',20);
text(sorted_Psvector(coX(2,find(coX(2,:)))),coY(2,find(coY(2,))), \leftarrow switch point','FontSize',15,'color','r");

Figure(3) %the score if we stay always at the same collaboration level
plot(sorted_Psvector,VIswitchl(1,INDEX),sorted_Psvector,VIswitchl(2,INDEX),sorted_Psvector,VIswitchl(3,INDEX),sorted_Psvector,VIs
witchl(4,INDEX))

xlabel('Ps");

ylabel('VIswitch');

title('Switch objective function score witout switching');

set(findobj(gca, Type','line','Color','black’),'LineWidth',2);

legend('HOR'HR',R",'H")

plotivi=2;

Figure(4)

plot(sorted_Psvector,VIswitch1(plotivl,INDEX))

xlabel('Ps");

ylabel('VIswitch');

title("““RLSA™);

set(findobj(gca, Type','line’,'Color','black’),'LineWidth',2);
text(Psvector(coX(plotlvl,find(coX(plotlvl,:)))),coYs(plotlvl,find(coYs(plotlvl,:))),'x','FontSize',20,'color','r','Horizontal Alignment','center’);
grid on

Figure(5)
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plot(sorted_Psvector,VIswitchwl(plotlvl,INDEX),Xaxis,maxv,'--.k")

xlabel('Ps");

ylabel('VIswitch');

title(““CTSA™);

set(findobj(gca, Type','line’,'Color','black’),'LineWidth',2);
text(Psvector(coXw(plotlvl,find(coXw(plotlvl,:)))),coYsw(plotlvl,find(coYsw(plotlvl,:))),'x','FontSize',20, color','r','Horizontal Alignment','ce
nter');

grid on

Figure(6)

plot(sorted_Psvector,VIswitchfwl(plotlvl,INDEX),Xaxis,maxv,'--.k")

xlabel('Ps");

ylabel('VIswitch');

title(““CFSA™);

set(findobj(gca, Type','line','Color','black’),'LineWidth',2);
text(Psvector(coXf(plotlvl,find(coXf(plotlvl,:)))),coYsfw(plotlvl,find(coYsfw(plotlvl,:))),'x','FontSize',20,'color','r','Horizontal Alignment','ce
nter);

grid on

Figure(7)

plot(sorted_Psvector,VIswitchfnewl(plotlvl,INDEX),Xaxis,maxv,"--.k")

xlabel('Ps");

ylabel('VIswitch');

title(“PRSA™);

set(findobj(gca, Type','line','Color','black’),'LineWidth',2);
text(Psvector(coXfnew(plotlvl,find(coXfnew(plotlvl,:)))),coYsfnew(plotlvl,find(coYsfnew(plotivl,:))),'x','FontSize', 20, color’,'r','Horizontal A
lignment','center");

grid on

Figure(8)

Xaxis=[12 3 45];

Yaxis=[(VI1-VI2)' (VI1-VI3)' (VI1-VI4)' (VI1-VI5)T;

bar(Yaxis)

set(gca,' X TickLabel' {'regular switch','switch with max value filter', 'switch with max v. filter after freq p.','switch with past consideration'})
xlabel('type of algorithm’);

ylabel('VI gain’);

title('Comparison of VI gains');

legend('HOR'/HR',R",'H")

Figure(9)

Xaxis=[12 3 45];

Yaxis=[((VI1-VI2)./VI1)' (VI1-VI3)./VIL) (VI1-VI4)./VI1) ((VI1-VI5).VILT;

bar(Yaxis)

set(gca,' X TickLabel' {'regular switch','switch with max value filter', 'switch with max v. filter after freq p.','switch with past consideration'})
xlabel('type of algorithm");

ylabel('VI gain in percentage");

title('Comparison of VI gains');

legend(HOR',HR',R"/H")
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Simulation for random normal distribution of Ps and d’h:

% This program performs dynamic switching at normal distribution of Ps and dh parameters
% the program calculates the hit and false alarm probabilities and the

% value of the operational cost according to betas and dtags

% This version will show the objective function values for all collaboration

% levels and for all betas combinations.

cle

close all

clear all

%Psvector=linspace(0.1,0.9,200);

%Psvector=rand(1,200);%random uniform

Psvector=randn(1,200);%random normal

ctmp=max(abs(Psvector));

Psvector=Psvector./(ctmp*2);

Psvector=abs(Psvector+0.49);

dhvector=randn(1,200);%random normal

ctmp=max(abs(dhvector));

dhvector=dhvector./(ctmp);

dhvector=dhvector+0.5;

for rr=1:4

=1

i=1;

1=1;

p=1;

CCL=rr %current collaboration level

CCLw-=rT,;

CCLf=rr;

CCLnews=rr;

VI1(rr)=0;

VI2(rr)=0;

VI13(rr)=0;

VI4(rr)=0;

VI5(rr)=0;

VI16(rr)=0;

VI7(rr)=0;

VI8(rr)=0;

VI19(rr)=0;

V110(rr)=0;

bound1=1;

Xaxis=linspace(0,1,200);

N=1000; % # of objects

Nstr=num2str(N);

tmin=0.0000005; %frequency of the switch

tlastswitch=now; %time of the last switch

tlastswitchw=now; %time of the last switch

tlastswitchf=now;

tlastswitchnew=now;

ttemp=now;

VVp=-5000000000; %penalty for frequency

minv=1000; %minimal value of VIswictch for switching

maxv=1500; %maximal value of VIswictch for switching

VFA2H=[5]; %[0.05:0.05:1,1:0.1:10,10:1:100]; %VFA/VH aspect ratio range

VAR=1;

VARstr=num2str(VFA2H(VAR)*10);

if VFA2H(VAR)==0.333
VARstr=num2str(3);

end

%format short

for Pscount=1:1:200;
Ps=Psvector(Pscount);
Psstr=num2str(Ps*100);
dtag=dhvector(Pscount);
%dtag=0.7;

%for dh=1:1:40

dtag=dtag-1; %[-0.1:-0.1:-4]; % the range of d' for human (second detector)
Dh=num2str(-dtag*10);

dtagR=0.3;

%dr=1;

dtagR=dtagR-1; %[-0.1:-0.1:-4]%-2
Dr=num2str(-dtagR*10);
%lnbetar=1 %[-3:0.1:3]
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VH=10;

VM=5;

VCR=3;
VHstr=num2str(VH);
VFA=-VH.*VFA2H(VAR);
Vc=-2;
VCstr=num2str(-\Vc);
Vt=-2000/3600;
Vtstr=num2str(-Vt*3600);

trespond=1,;
tr=0.01;

c3=1;
Inbetar=0;
c2=1;
Inbetah=0;

cl=1;
Inbetarh=2;

% the probabilities of the robot
Zsr(c1,c2,c3)=(-2.*Inbetar+dtagR."2)./(2.*dtagR);
Znr(c1,c2,c3)=(-2.*Inbetar-dtagR."2)./(2.*dtagR);
phr(cl,c2,c3)=1-normcdf(Zsr(cl,c2,c3));
pfar(c1,c2,c3)=1-normcdf(Znr(cl,c2,c3));
ratiol=pfar(c1,c2,c3)./phr(cl,c2,c3);
ratio2=(1-pfar(c1,c2,c3))./(1-phr(cl,c2,c3));

if Inbetar==0 & Inbetah==0 & Inbetarh==0
Zsrtest=(-2.*Inbetar+dtagR."2)./(2.*dtagR);
Znrtest=(-2.*Inbetar-dtagR.*2)./(2.*dtagR);
phrtest=1-normcdf(Zsr(c1,c2,c3));
pfartest=1-normcdf(Znr(c1,c2,c3));
ratiol=pfar(c1,c2,c3)./phr(cl,c2,c3);
ratio2=(1-pfar(c1,c2,c3))./(1-phr(cl,c2,c3));

end

%the optimal parameters of the robot if he was a single detector
betastar(c1,c2,c3)=((1-Ps)./Ps).*VFA2H(VAR); % calculating Beta*
ZsRstar(c1,c2,c3)=(-2.*log(betastar(cl,c2,c3))+dtagR."2)./(2.*dtagR);
ZnRstar(c1,c2,c3)=(-2.*log(betastar(c1,c2,c3))-dtagR."2)./(2.*dtagR);
phrstar(c1,c2,c3)=1-normcdf(ZsRstar(c1,c2,c3));
pfarstar(c1,c2,c3)=1-normcdf(ZnRstar(c1,c2,c3));

%the probabilities of the HO (second detector) for object that the
%robot didn't detect
ZsH(c1,c2,c3)=(-2.*Inbetah+dtag."2)./(2.*dtag);
ZnH(c1,c2,c3)=(-2.*Inbetah-dtag.~2)./(2.*dtag);
phh(c1,c2,c3)=1-normcdf(ZsH(c1,c2,c3));
pfah(c1,c2,c3)=1-normcdf(ZnH(c1,c2,c3));

%the probabilities of the HO (second detector) for object that the robot
%already detected
ZsRH(c1,c2,c3)=(-2.*Inbetarh+dtag.”2)./(2.*dtag);
ZnRH(c1,c2,c3)=(-2.*Inbetarh-dtag."2)./(2.*dtag);
phrh(c1,c2,c3)=1-normecdf(ZsRH(c1,c2,c3));
pfarh(c1,c2,c3)=1-normcdf(ZnRH(c1,c2,c3));

% the time parameters

tHh(c1,c2,c3)=5;
tFAh(c1,c2,c3)=5;
tHrh(c1,c2,c3)=5;
tFArh(c1,c2,c3)=5;

tMh(c1,c2,c3)=5;
tCRh(c1,c2,c3)=5;
tMrh(c1,c2,c3)=5;
tCRrh(c1,c2,c3)=5;
tmotor=2;
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PHs(c1,c2,c3)=phr(c1,c2,c3).*phrh(c1,c2,c3)+(1-phr(cl,c2,c3)).*phh(cl,c2,c3);
VHs(c1,c2,c3)=N.*Ps.*PHs(c1,c2,c3).*VH;
PMs(c1,c2,c3)=phr(c1,c2,c3).*(1-phrh(cl,c2,c3))+(1-phr(cl,c2,c3)).*(1-phh(cl,c2,c3));
VMs(cl,c2,c3)=N.*Ps.*PMs(c1,c2,c3).*VM;
FFAs(c1,c2,c3)=N.*(1-Ps).*pfar(cl,c2,c3).*pfarh(cl,c2,c3)+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*pfah(cl,c2,c3);
VFAs(cl,c2,c3)=FFAs(c1,c2,c3).*VFA;
FCRs(c1,¢2,c3)=N.*(1-Ps).*pfar(c1,c2,c3).*(1-pfarh(cl,c2,c3))+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*(1-pfah(cl,c2,c3));
VCRs(c1,c2,c3)=FCRs(c1,c2,c3).*VCR;

ts(c1,c2,c3)=N.*Ps.*phr(c1,c2,c3).*phrh(cl,c2,c3).*tHrh(c1,c2,c3)+N.*Ps.*(1-phr(c1,c2,c3)).*phh(cl,c2,c3).*tHh(c1,c2,c3)+N.*(1-
Ps).*pfar(c1,c2,c3).*pfarh(cl,c2,c3).*tFArh(c1,c2,c3)+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*pfah(cl,c2,c3).*tFAh(cl,c2,c3)...
+N.*Ps.*phr(c1,c2,c3).*(1-phrh(cl,c2,c3)).*tMrh(c1,c2,c3)+N.*Ps.*(1-phr(c1,c2,c3)).*(1-phh(cl,c2,c3)).*tMh(c1,c2,c3)+N.*(1-
Ps).*pfar(cl,c2,c3).*(1-pfarh(cl,c2,c3)).*tCRrh(c1,c2,c3)+N.*(1-Ps).*(1-pfar(c1,c2,c3)).*(1-pfah(cl,c2,c3)). *tCRh(c1,c2,c3)+tr;

tsHORr(c1,c2,c3)=N.*Ps.*phr(c1,c2,c3).*phrh(cl,c2,c3).*(tHrh(c1,c2,c3)+tmotor)+N.*Ps.*(1-
phr(c1,c2,c3)).*phh(cl,c2,c3).*(tHh(c1,c2,c3)+tmotor)+N.*(1-Ps).*pfar(cl,c2,c3).*pfarh(cl,c2,c3).*(tFArh(cl,c2,c3)+tmotor)+N.*(1-
Ps).*(1-pfar(c1,c2,c3)).*pfah(cl,c2,c3).*(tFAh(c1,c2,c3)+tmotor)...
+N.*Ps.*phr(c1,c2,c3).*(1-phrh(cl,c2,c3)).*tMrh(c1,c2,c3)+N.*Ps.*(1-phr(c1,c2,c3)).*(1-phh(cl,c2,c3)).*tMh(c1,c2,c3)+N.*(1-
Ps).*pfar(cl,c2,c3).*(1-pfarh(cl,c2,c3)).*tCRrh(c1,c2,c3)+N.*(1-Ps).*(1-pfar(c1,c2,c3)).*(1-pfah(cl,c2,c3)). *tCRh(c1,c2,c3)+tr;

tsHOR(c1,c2,c3)=N.*Ps.*phr(c1,c2,c3).*phrh(c1,c2,c3).*tHrh(cl,c2,c3)+N.*Ps.*(1-
phr(c1,c2,c3)).*phh(cl,c2,c3).*(tHh(c1,c2,c3)+tmotor)+N.*(1-Ps).*pfar(cl,c2,c3).*pfarh(cl,c2,c3).*tFArh(cl,c2,c3)+N.*(1-Ps).*(1-
pfar(cl,c2,c3)).*pfah(cl,c2,c3).*(tFAh(cl,c2,c3)+tmotor)...
+N.*Ps.*phr(c1,c2,c3).*(1-phrh(cl,c2,c3)).*(tMrh(c1,c2,c3)+tmotor)+N.*Ps.*(1-phr(cl,c2,c3)).*(1-
phh(c1,c2,c3)).*tMh(c1,c2,c3)+N.*(1-Ps).*pfar(c1,c2,c3).*(1-pfarh(cl,c2,c3)).*(tCRrh(c1,c2,c3)+tmotor)+N.*(1-Ps).*(1-
pfar(cl,c2,c3)).*(1-pfah(cl,c2,c3)).*tCRh(c1,c2,c3)+tr;

Ndetect(c1,c2,c3)=(N.*Ps.*phr(c1,c2,c3).*phrh(c1,c2,c3)+N.*Ps.*(1-phr(c1,c2,c3)).*phh(cl,c2,c3)+N.*(1-
Ps).*pfar(c1,c2,c3).*pfarh(cl,c2,c3)+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*pfah(cl,c2,c3));
VTs(cl,c2,c3)=ts(cl,c2,c3).*Vit+(N.*Ps.*phr(cl,c2,c3).*phrh(cl,c2,c3)+N.*Ps.*(1-phr(cl,c2,c3)).*phh(cl,c2,c3)+N.*(1-
Ps).*pfar(cl,c2,c3).*pfarh(c1,c2,c3)+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*pfah(cl,c2,c3)).*Vc;
VTsHORr(c1,c2,c3)=tsHORr(c1,c2,c3).*Vt+(N.*Ps.*phr(cl,c2,c3).*phrh(c1,c2,c3)+N.*Ps.*(1-phr(cl,c2,c3)).*phh(cl,c2,c3)+N.*(1-
Ps).*pfar(c1,c2,c3).*pfarh(cl,c2,c3)+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*pfah(cl,c2,c3)).*Vc;
VTsHOR(c1,c2,c3)=tsHOR(c1,c2,c3).*Vt+(N.*Ps.*phr(c1,c2,c3).*phrh(cl,c2,c3)+N.*Ps.*(1-phr(c1,c2,c3)).*phh(cl,c2,c3)+N.*(1-
Ps).*pfar(cl,c2,c3).*pfarh(c1,c2,c3)+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*pfah(cl,c2,c3)).*Vc;
VIs(c1,c2,c3)=VHs(cl,c2,c3)+VMs(cl,c2,c3)+VFAs(cl,c2,c3)+VCRs(cl,c2,c3)+VTs(cl,c2,c3);
VIsHORr(c1,c2,c3)=VHs(cl,c2,c3)+VMs(cl,c2,c3)+VFAs(cl,c2,c3)+VCRs(cl,c2,c3)+VTsHORr(c1,c2,c3);
VIsHOR(c1,c2,c3)=VHs(c1,c2,c3)+VMs(cl,c2,c3)+VFAs(cl,c2,c3)+VCRs(cl,c2,c3)+VTsHOR(c1,c2,c3);

PHsR(c1,c2,c3)=phr(cl,c2,c3);

VHsR(c1,c2,c3)=N.*Ps.*PHsR(c1,c2,c3).*VH;
FFAsR(c1,c2,c3)=N.*(1-Ps).*pfar(cl,c2,c3);

VFAsR(cl,c2,c3)=FFAsR(c1,c2,c3).*VFA;

tsR(c1,c2,c3)=tr;
VTsR(c1,c2,c3)=tsR(c1,c2,c3).*Vt+(N.*Ps.*phr(cl,c2,c3)+N.*(1-Ps).*pfar(cl,c2,c3)).*Vc;
VIsR(c1,c2,c3)=VHsR(c1,c2,c3)+VFAsR(c1,c2,c3)+VTsR(c1l,c2,c3);

% the probabilities of the HO collaboration level were taken from the

% robot probabilities and the difference between the HO and the R

% collaboration levels is just on the times parameters.

PHsHO(c1,c2,c3)=phr(c1,c2,c3);

VHsHO(c1,c2,c3)=N.*Ps.*PHsHO(c1,c2,c3).*VH,;

FFAsHO(c1,c2,c3)=N.*(1-Ps).*pfar(cl,c2,c3);

VFAsHO(c1,c2,c3)=FFAsSHO(c1,c2,c3).*VFA;

tsHO(c1,¢2,c3)=N.*Ps.*PHsHO(c1,c2,c3).*(tHh(c1,c2,c3)+tmotor)+FFAsHO(c1,c2,c3).*(tFAh(cl,c2,c3)+tmotor)...
+N.*Ps.*(1-PHsHO(c1,c2,c3)).*tMh(c1,c2,c3)+N.*(1-Ps).*(1-pfar(c1,c2,c3)).*tCRh(c1,c2,c3);

VTsHO(c1,c2,c3)=tsHO(c1,c2,c3).*Vt+(N.*Ps.*phr(c1,c2,c3)+N.*(1-Ps).*pfar(cl,c2,c3)).*Vc;

VIsHO(c1,c2,c3)=VHsHO(c1,c2,c3)+VFAsHO(c1,c2,c3)+VTsHO(c1,c2,c3);

%
%switching calculations
%

CL(Pscount,:)=[VIsHORr(c1,c2,c3) VISHOR(c1,c2,c3) VIsR(c1,c2,c3) VIsHO(c1,c2,c3)]; %values' matrix of different collaboration
levels

[C,CCLtemp]=max(CL(Pscount,:)); %C=value, CCLtemp=Ilocation

SV(1,Pscount)=[C]; %switch vector of best collaboration values for each row in CL

VI1s0o=SV(1,Pscount);

VIscl=CL(Pscount,rr);

VIsc=CL(Pscount,CCL);

VlIscw=CL (Pscount,CCLwy);

VIscf=CL(Pscount,CCLf);

VIscnew=CL(Pscount,CCLnew);
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al="HOR',
a2="HRy,
a3='R’,
a4="H’,

switch CCLtemp

case 1
labell=al;

case 2
labell=a2;

case 3
labell=a3;

otherwise
labell=a4;

end

switch CCL
case 1
label2=al;
case 2
label2=a2;
case 3
label2=a3;
otherwise
label2=a4;
end

SVF(1,Pscount)=[CCLtemp]; %switch vector of best collaboration levels
%
%Switch objective fuction for ploting switch points
%

Vlswitchl(rr,Pscount)=(VIso-VIscl); %+trespond*Vi+Vp*(ttemp+tmin-now)*(Vp*(ttemp+tmin-now)<0); %S1

Vlswitch(rr,Pscount)=(VIso-Vlsc); %S2 for calculation

Vliswitch1(rr,Pscount)=(V1so-Vlsc);%S2 for plot

VlIswitchw(rr,Pscount)=(VIso-VIscw); %S3 for calculation

VIswitchwl(rr,Pscount)=(VIso-VIscw); %S3 for plot

Vliswitchfwl(rr,Pscount)=(VIso-VIscf)+Vp*(tlastswitchf+tmin-now)*(Vp*(tlastswitchf+tmin-now)<0); %S4 for plot

Vliswitchfw(rr,Pscount)=(VIso-VIscf); %S4 for calculation

VlIswitchfnewl(rr,Pscount)=(V1so-VIscnew)+trespond*Vt+Vp*(tlastswitchnew+tmin-now)*(Vp*(tlastswitchnew+tmin-now)<0); %S5
for plot

Vlswitchfnew(rr,Pscount)=(V1so-VIscnew); %S5 for calculation

%

%
%switching algorithm
%

%S2 algorithm

if CCLtemp~=CCL
tcurrent=now;
if (tcurrent-tlastswitch)>tmin %checking the frequency

disp(‘switch to');
disp(labell);
disp(‘from");
disp(label2);
CCL=CCLtemp
coY(rr,j)=C;
coX(rr,j)=Pscount;
coYs(rr,j)=VIswitch1(rr,Pscount); %for the switching objective function plot
tlastswitch=tcurrent;
=i
VIswitch(rr,Pscount)=-trespond*Vt; %updating VIswitch as optimal value after switching
else
disp(‘Collaboration level not optimal’);

end
end
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%8S3 algorithm

if CCLtemp~=CCLw %optimization for switching
tcurrent=now;
if (tcurrent-tlastswitchw)>tmin %checking the frequency
if VIswitchw(rr,Pscount)>maxv

CCLw=CCLtemp;

coYw(I)=C;
coXw(rr,l)=Pscount;
coYsw(rr,I)=VIswitchwl(rr,Pscount); %for the switching objective function plot
tlastswitchw=tcurrent;
1=1+1;

VIswitchw(rr,Pscount)=-trespond*Vt; %updating VIswitch as optimal value after switching

end
end
end

%S4

if CCLtemp~=CCLf %optimization for switching with frequency
tcurrent=now;

if VIswitchfwi(rr,Pscount)>maxv
CCLf=CCLtemp;

%coYw(i)=C;
coXf(rr,i)=Pscount;
coYsfw(rr,i)=VIswitchfwl(rr,Pscount);

VlIswitchfw(rr,Pscount)=-trespond*Vt-Vp*(tlastswitchf+tmin-now)*(Vp*(tlastswitchf+tmin-now)<0); %updating VI with response
time for switching

i=i+1;
tlastswitchf=tcurrent;
end
end

%S5

if CCLtemp~=CCLnew %optimization for switching with frequency
tcurrent=now;

if ((tcurrent-tlastswitchnew)>tmin)|(VIswitchfnew1(rr,Pscount)>maxv)
% if VIswitchfnew(Pscount)>maxv
bound2=Pscount;

BVF(bound1:bound2)=[CCLtemp];
newVF(bound1:bound2)=SVF(bound1:bound2)==BVF(boundl:bound2);
if sum(newVF(bound1:bound2))>((bound2-bound1)/2)

CCLnew=CCLtemp;

coXfnew(rr,p)=Pscount;
coYsfnew(rr,p)=VIswitchfnew1(rr,Pscount);

p=p+1;
boundl=Pscount+1;

Vlswitchfnew(rr,Pscount)=-trespond*Vt-Vp*(tlastswitchnew+tmin-now)*(Vp*(tlastswitchnew+tmin-now)<0);
tlastswitchnew=tcurrent;
end
end
end

VI11(rr)=VIswitchl(rr,Pscount)+V11(rr); %regular cost - S1

VI12(rr)=VIswitch(rr,Pscount)+VI12(rr); %cost with switch - S2

VI13(rr)=Vlswitchw(rr,Pscount)+V13(rr); %cost with switch and maxv filter - S3

VI14(rr)=VlIswitchfw(rr,Pscount)+V14(rr); %cost with switch and maxv filter after frequency penalty - S4
VI5(rr)=VIswitchfnew(rr,Pscount)+VI15(rr); %cost with switch and maxv filter after frequency penalty and new algorithm - S5

VI16(rr)=VIscl+V16(rr);
VI7(rr)=VIsc+VI7(rr);
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VI18(rr)=VIscw+VI18(rr);
VI9(rr)=VIscf+VI19(rr);
VI110(rr)=VIscnew+VI110(rr);

end %Pscount
end Yrr

%
%figures
%

figure(1)

subplot(1,2,1)
plot(Xaxis,CL(:,1),-",Xaxis,CL(:,2),"--',Xaxis,CL(:,3),"",Xaxis,CL(:,4),-.")
xlabel(‘time (sec));

ylabel('VIY);

title('Dynamic Switching');

set(findobj(gca, Type','line','Color','black’),'LineWidth',2);
legend('HOR',HR','R','H")

subplot(1,2,2)
plot(Xaxis,CL(:,1),-',Xaxis,CL(:,2),'--',Xaxis,CL(:,3),"",Xaxis,CL(:,4),-.", Xaxis,SV,'black’)
xlabel('time (sec)");

ylabel('VIY);

title('Dynamic Switching');

set(findobj(gca, Type','line','Color','black’),'LineWidth',3);

legend('HOR'HR',R",'H")

text(Xaxis(30),SV(30),\leftarrow Best CL','Horizontal Alignment','left','FontSize',20);

figure(2)

subplot(1,2,1)

plot(Xaxis,CL(:,1),-",Xaxis,CL(:,2),"--',Xaxis,CL(:,3),"",Xaxis,CL(:,4),-.")

xlabel('time (sec)");

ylabel('VIY);

title('Dynamic Switching with switch points');

set(findobj(gca, Type','line’,'Color','black’),'LineWidth',2);

legend(HOR',HR',R",/H")

text(Xaxis(coX(2,find(coX(2,:)))),coY(2,find(coY(2,:))), \leftarrow switch point','FontSize',15,'color’,'r');

subplot(1,2,2)
plot(Xaxis,CL(:,1),-",Xaxis,CL(:,2),"--',Xaxis,CL(:,3),"",Xaxis,CL(:,4),-.", Xaxis,SV,'black’)

xlabel('time (sec)");

ylabel('VIY;

title('Dynamic Switching with switch points');

set(findobj(gca, Type','line’,'Color’,'black’),'LineWidth',3);

legend('HOR'/HR','R",'H")

text(Xaxis(30),SV(30), \leftarrow Best CL','Horizontal Alignment','left’,'FontSize',20);
text(Xaxis(coX(2,find(coX(2,:)))),coY (2,find(coY(2,:))), \leftarrow switch point','FontSize',15,'color’,'r");

figure(3)%the score if we stay always at the same collaboration level
plot(Xaxis,VIswitchl(1,:),'-',Xaxis,VIswitchl(2,:),--',Xaxis,VIswitchl(3,:),"', Xaxis,VIswitchl(4,:),-.")
xlabel('time (sec)");

ylabel('VIswitch');

title("VIswitch values without switching');

set(findobj(gca, Type','line','Color','black’),'LineWidth',2);

legend('HOR'HR',R",'H")

plotivi=2;

figure(4)

subplot(3,1,1)

plot(Xaxis,VIswitchl(plotlvl,:))

xlabel('time (sec)");

ylabel('VIswitch');

title(RLSA);

set(findobj(gca, Type','line','Color','black’),'LineWidth',2);
text(Xaxis(coX(plotlvl,find(coX(plotlvl,:)))),coYs(plotlvl,find(coYs(plotlvl,:))),'x','FontSize',20,'color','r','Horizontal Alignment','center');
grid on

subplot(3,1,2)

plot(Xaxis,VIswitchl(plotlvl,:)-Viswitch(plotlvl,:))
grid on
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xlabel('time (sec)");
ylabel('Gain’);

subplot(3,1,3)
plot(Xaxis,cumsum(VIswitchl(plotlvl,;)-ViIswitch(plotlvl,:)))
grid on

xlabel('time (sec)");

ylabel('Cumulative gain’);

figure(5)

subplot(3,1,1)

plot(Xaxis,VIswitchwl(plotlvl,:),Xaxis,maxv,'--.k")

xlabel('time (sec)");

ylabel('VIswitch');

title(CTSA");

set(findobj(gca, Type','line’,'Color','black’),'LineWidth',2);
text(Xaxis(coXw(plotlvl,find(coXw(plotlvl,:)))),coYsw(plotlvl,find(coYsw(plotlvl,:))),'x','FontSize',20,'color','r','Horizontal Alignment','cent
er’);

grid on

subplot(3,1,2)
plot(Xaxis,VIswitchl(plotlvl,:)-Viswitchw(plotlvl,:))
grid on

xlabel('time (sec)");

ylabel('Gain’);

subplot(3,1,3)
plot(Xaxis,cumsum(VIswitchl(plotlvl,:)-ViIswitchw(plotlvl,:)))
grid on

xlabel('time (sec)");

ylabel('Cumulative gain');

figure(6)

subplot(3,1,1)

plot(Xaxis,VIswitchfwl(plotlvl,:),Xaxis,maxv,'-- k')

xlabel('time (sec)");

ylabel('VIswitch');

title('CFSA");

set(findobj(gca, Type','line’,'Color','black’),'LineWidth',2);
text(Xaxis(coXf(plotlvl,find(coXf(plotlvl,:)))),coYsfw(plotlvl,find(coYsfw(plotlvl,:))),’x','FontSize',20,'color','r','Horizontal Alignment','cente
r;

grid on

subplot(3,1,2)
plot(Xaxis,VIswitchl(plotlvl,:)-VIswitchfw(plotivl,:))
grid on

xlabel(‘time (sec));

ylabel('Gain’);

subplot(3,1,3)
plot(Xaxis,cumsum(VIswitchl(plotlvl,:)-VIswitchfw(plotlivl,:)))
grid on

xlabel(‘time (sec)’);

ylabel('Cumulative gain');

figure(7)

subplot(3,1,1)

plot(Xaxis,VIswitchfnewl(plotlvl,:),Xaxis,maxv,'--.K)

xlabel(‘time (sec)’);

ylabel('VIswitch');

title(PRSA'");

set(findobj(gca, Type','line’,'Color','black’),'LineWidth',2);
text(Xaxis(coXfnew(plotlvl,find(coXfnew(plotlvl,:)))),coYsfnew(plotlvl,find(coYsfnew(plotlvl,:))),'x’,'FontSize',20,'color','r','Horizontal Alig
nment','center");

grid on

subplot(3,1,2)
plot(Xaxis,VIswitchl(plotlvl,:)-Viswitchfnew(plotlvl,:))
grid on

xlabel('time (sec)");

ylabel('Gain’);

subplot(3,1,3)

plot(Xaxis,cumsum(VIswitchl(plotlvl,:)-ViIswitchfnew(plotlvl,:)))
grid on
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xlabel('time (sec)");
ylabel('Cumulative gain');

figure(8)

% subplot(2,1,1)

% Xaxis=[12345];

% Yaxis=[(VI1-V12)' (VI1-VI3)' (VI1-VI4) (VI1-VI5)T;
% bar(Yaxis)

9% set(gca, XTickLabel' {'S2','S3, 'S4''S5'})

% xlabel('type of algorithm’);

% ylabel('VI gain’);

% title('Comparison of VI gains');

% legend('HOR''HR','R",'H’)

% subplot(2,1,2)

Xaxis=[12 3 45];

Yaxis=[((VI1-VI12)./VI1)' ((VI1-VI3)./VI1) ((VI1-VI4)./VI1) ((VI1-VI5).IVIL)T;
bar(Yaxis)

set(gca,' XTickLabel' ,{'RLSA','CTSA", 'CFSA''PRSA})

xlabel('Switching algorithms');

ylabel('% of VI gain’);

title('Comparison of VI gains');

legend('HOR'HR','R",'H")
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Bty

29 NNOY NINT P2 2NNDT NNN VINID DINNINON DY DIV M1 N8N NTIAYD
DYINDIVINN DOVINA DY NPNY OYS  MIVN NMT NNDOYNI VI -DTR NN DY MNY
SV MIVN NMONPNI DY DDIAN NTIPNN . NDOWNN NI D3 DMIVNI9T DY MY
1IN, NN NNMWNID NOIWNN ONINIA DY DNANT DYDIYN NP DYD NNM TWN NN
.(Bechar et al., 2006) Y10 NN YIDW TIN N22ADM NDIVNN |, NIIWNN DY DIVNID
TNNY 29 TINMLIN NN WY DY MODINND ,N T IPNNI NNXINN NDIVON NNOY NINI

.(Sheridan, 1992) *y1w v nYpoa

T2y 2 NDIN MYNNIND IPTN INMD MINDT NN DINY DINININ NYIIN
NN HNNY 1IN PXYINIDA DIHIINOND . DIVNION DY NIV NPNDANM DMV DYININ
NIVNN NOXPNA DY IIPVAIRN TIVN 2IWIN YT DY THIONDVNIN N2V NIY NNID NI
NY2N DMINININN DY 1NONN . NHXIWNN N2IA0N , 01N, DTN DY DN DIVNID DY
2NN OINT, NNNX DY HNND YNNIV NZWI NNPY NI 1901, IMNN NN TN NN PNIYN1
NN Y8 “RLSA”  DOOINON . NON NANN MNT  2PY DIVNION PNV NNXY NN DY

DIIMVONX .DONTNN MPTN DYy MON2 ) NOWNT DY NN 7N AUVNNN TIUN DM

N TN G0 TIVH INY DY NIHRD DOKPN 90 NN IWRI N yxan “CTSA”

yxan “CEFSA” DmnoN .omMNmNn M TN 2y MY2)N2) NOIWNN HY N2NN NN MAYNND

DONINN MPTN NN RO ITHIN GO TIVN INY 23T NN NVNPND NNIN IYNRD NN

MYY PRI NN Y8 “PRSA” omnoN . nIamnn M TN N9IvY Moip NYHn oY TN

P72 ©NMIMONN Y5 “CESA” DmInoN YW NDwad 0T Y 1HNN DI0NI99 NN NADIN
DMV NIVH MIANONY NPNDINT NAY DN NMNID

SV DMONMON DNNIAN . NMY NPNONNN NI NNOY MINT YIIX Y IWY) NPINNDION
MIVNN DY NPNVANN N DD N2Y NION ONDA NPIOMID 200 HY YSIN TIVI 1AWIN NIIWNN
NON NN MINA NN NIONA DMIAWN D MIVAND DINNNN DI NOW PN NNPONN IPTVY
12127 YINRMT NNPNY DY NI NINN NDION DY . DIDI1ON DN YNID DI GN DINYD
VI -DTN NIIYND MINRPT NN YNID N DY 100 . DT N0 MIIYNI NN NYNI INND
AN NONI DINIINON DY VNN MNX . DYDY DINIINON DIWITNT DIWINIIN NIY MV
N DIV NI M YN MIRPT NINY ININ PEONION DY MIRIND . DTy
.DMNNP DMIPN NNN MIXRXIN NDY ININ DNIMININN Y, 7o NI

0N NPT, NIV NIY MINTONNDT NN,V DTN P2 DD NMY 1NN MIMN

* “3ction selection and automation of decision”, Sheridan, 1992 [32].
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