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Abstract 

Autonomous robots are systems that can perform tasks, make decisions, and act in real-time 

without human intervention. They are best-suited for applications that require accuracy in 

recurrences and high yield under stable conditions. However, application of autonomous robots in 

dynamic and changeable environment still produces inadequate results. An example can be seen in 

recognition tasks, where inadequacies in sensor and image processing technology have limited the 

capabilities of autonomous robotics in complex environments. By integrating the human’s 

perception skills with the autonomous systems’ accuracy and consistency, the combined human-

robotic system will result in improved performance. 

This thesis presents an in-depth evaluation of the performance of various integrated human-

robot system in target recognition tasks. The analyses are based on a quantitative model which was 

developed by Bechar (2006). The model includes four human-robot collaboration levels, which 

were designed specifically for target recognition tasks and are adjusted to an extensive range of 

automation; from manual to fully autonomous. The objective function includes four performance 

measurements which are based on the signal detection theory: hit, false alarm, miss and correct 

rejection. The objective function quantifies the influence of the robot, human, environment and task 

parameters through a weighted sum of the performance measurements, and enables it to determine 

the optimal operational level based on these parameters. In addition, the system’s objective function 

includes an operational cost part aimed at estimating the system’s cost associated with time and 

action.  

Bechar (2006) analyzed the objective function, excluding the parts of the reward for correct 

rejection and the penalty for miss. This thesis expands Bechar’s work by conducting a thorough 

numerical analysis including all parts of the objective function. In addition, comprehensive analysis 

of the operational costs which was not covered in Bechar’s work was conducted. 

The numerical analysis of the objective function was conducted in Matlab™ focusing on the 

influence of different parameters on the optimal operational level of various systems and on the 

effect of different parameters on the operational cost. In addition, sensitivity analysis of the 

influencing variables was performed for the optimal cases.  

Results reveal two types of systems. The first type consists of systems geared towards 

minimizing false alarms. The second type consists of systems geared towards detecting a target 

when one is presented. Symmetry between the objective function weights was found and lead to 

further investigation which discovered a new property of the objective function. The new property 

generalizes the model’s objective function and facilitates its analysis. In addition, the operational 

cost analysis reveals that the human decision time has great influence on the system’s performance.  
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1. Introduction 

1.1   Problem description 

Application of autonomous robots in unstructured and dynamic environments still produces 

inadequate results. Having an automated system handle all conceivable scenarios is extremely 

difficult and the promise of automatic and efficient remote operations has fallen short of 

expectations (Fletcher et al., 2005; Steinfeld, 2004). Moreover, inadequacies in sensor and image 

processing technology have limited the capabilities of autonomous robotics in complex 

environments (Everett and Dubey, 1998). Therefore, the use of an autonomous robotic system is not 

advisable (Al-Jumaily and Amin, 2000; Penin et al., 1998). Furthermore, when dealing with natural 

objects (e.g., medical, agriculture objects) the difficulty increases since the objects also have high 

degrees of variability (in shape, texture, color, size and position) and this leads to more complicated 

robotic systems and results in a system which is difficult and expensive to develop (Bechar, 2006). 

Humans' acute perception capabilities enable them to deal with a flexible, vague, changing, and 

wide scope of definitions (Chang et al., 1998). Moreover, humans have superior recognition 

capabilities and can easily adapt to changing environmental and object conditions (Rodriguez and 

Weisbin, 2003). However, a human operator is not consistent, tends to fatigue, and suffers from 

distraction (Van Erp et al., 2004). 

The human perception, acting and thinking capabilities in dynamic environments are superior to 

those of robots, however there can be huge potential risks to human safety in getting these benefits. 

Robots provide complementary skills to work in extremely risky environments, but their ability to 

perceive, think, and act on their own is far from flawless (Rodriguez and Weisbin, 2003).  

By taking advantage of the human perception skills and the autonomous systems’ accuracy and 

consistency the combined human-robotic system can be simplified, resulting in improved 

performance (Parasuraman et al., 2000). 

Robots are increasingly being used in assistive technology, rehabilitation, surgery, therapy, 

service and entertainment domains and methods which will enable easy and effective 

communication between robots and humans are crucial in all of these areas (Salter et al., 2004). 

Target recognition is a common task and usually an essential part of a robotic system. However, 

target recognition in unstructured environments, such as, agriculture, is characterized by a low 

detection rate and a high false alarm rate (Bechar, 2006). Based on Sheridan’s scale of ‘action 

selection and automation of decision’ (table 3), Bechar (2006), defined, tested and evaluated four 

basic levels for Human-Robot collaboration for target recognition tasks. The system objective 

function is designed to enable determination of the expected value of task performance, given the 
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parameters of the system, the task, and the environment (Bechar, 2006). The objective function 

quantifies the influence of the robot, human, environment and task parameters through a weighted 

sum of performance measures, and enables it to determine the optimal operational level based on 

these parameters. In addition, the system’s objective function includes an operational cost part 

aimed at estimating the system’s cost associated with time and action. 

1.2 Research objectives 

The main research objective is to conduct a thorough numerical analysis of the objective 

function developed by Bechar (2006). Specifically this research aims at:   

� Evaluation of the performance of various types of human-robot systems for target recognition 

tasks for different environmental, task, human and robot parameters.  

� Extensive analysis of operational costs: investigation of the effect of each of the operational 

cost’s parameters on the system’s performance. 

� Examination of similarities between different systems based on the behavior of their objective 

function.  

1.3 Research contribution  

Autonomous robots are inefficient in complex assignments and unstructured environments. 

Integrating humans into robotic systems can help simplify the system and improve their 

performance.   

Bechar (2006) analyzed the objective function, excluding the parts of the reward for correct 

rejection and the penalty for miss. This thesis expands Bechar’s work by conducting a thorough 

numerical analysis including all parts of the objective function. In addition, comprehensive analysis 

of the operational costs which was not covered in Bechar’s work was conducted. 

Results of this work confirm previous work and provide a tool in designing new integrated 

systems and controlling various human-robot systems by mapping the influence of different 

parameters on the system state. 

1.4 Thesis Overview 

Chapter 2 presents a literature review and is followed by an in-depth description of the model 

developed by Bechar, in chapter 3, which serves as the basis for this research. The research methods 

are presented in chapter 4 followed by an expanded analysis of the best operational level in chapter 

5. Chapter 6 details the analysis of the operational costs and its results. Chapter 7 presents the 

sensitivity analyses. The thesis is summarized with conclusions presented in chapter 8 followed by 

a discussion and future work presented in chapter 9 
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2. Literature review 

2.1  Human Robot Collaboration  

2.1.1 Autonomous robots – advantages and drawbacks   

Autonomous robots are systems that can perform tasks, make decisions, and act in real-time 

without human intervention. They are best-suited for applications that require accuracy in 

recurrences and high yield under stable conditions (Holland and Nof, 1999). Usually autonomous 

robots are used in a structured environment, such as the industrial production floor, and are required 

in applications, which demand reductions in manpower and workload (Holland and Nof, 1999). 

According to Rucci et al. (1999), autonomous robotic systems must possess a high degree of 

flexibility to adapt to the continuously changing conditions of the environment. An important 

challenge which designers of autonomous robotic systems often face, deals with the nonlinear, real-

time response requirements underlying the sensor–motor control formulation (Ng and Trivedi, 

1998).  

Application of autonomous robots in dynamic and changeable environments still produces 

inadequate results (Bechar and Edan, 2003). Therefore, the use of an autonomous robotic device is 

not advisable (Al-Jumaily and Amin, 2000; Penin et al., 1998). An example can be seen in 

recognition tasks, where inadequacies in sensor and image processing technology have limited the 

capabilities of autonomous robotics in complex environments (Everett and Dubey, 1998). 

Moreover, having an automated system handle all conceivable scenarios is extremely difficult and 

the promise of automatic and efficient remote operations has fallen short of expectations (Fletcher 

et al., 2005; Steinfeld, 2004).  

2.1.2 The Human operator's characteristics  

Humans have superior recognition capabilities and can easily adapt to changing environmental 

and object conditions (Rodriguez and Weisbin, 2003). Their acute perception capabilities enable 

humans to deal with a flexible, vague, changing, and wide scope of definitions (Chang et al., 1998). 

However, a human operator is not consistent, tends to fatigue, and suffers from distraction (Van Erp 

et al., 2004). In addition, human operators are known to make mistakes of overlooking collisions 

with surrounding objects, which result in expensive repairs and limit the system's effectiveness and 

utility. People seem to be unable to navigate and manipulate remote equipment without colliding 

with objects in the environment (Ivanisevic and Lurnehky, 1998). 

Another example where the human operator's capabilities are insufficient is guiding the position 

of a robotic welding gun or spray painting device. These kinds of tasks seem to be particularly 
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difficult for people, even when visual feedback is provided (Ivanisevic and Lurnehky, 1998). Table 

1 presents a summary of human and robot advantages and drawbacks. 

 

Table 1: Human operator vs. robot comparison 

  Advantages Drawbacks 

Human 

� Superior recognition capabilities 

� Acute perception 

� Cognitive capability 

� Inconsistency  

� Tends to fatigue  

� Suffers from distractions 

Robot 

� Accuracy 

� High yield 

 

� Inadequate results in unstructured 

environment 

� Complex decision making 

 

2.1.3 Human – Robot collaboration overview 

According to Sheridan (1992), human-robot collaboration means that one or more human 

operators are intermittently or continuously programming and receiving information from a 

computer that interconnects through artificial effectors and sensors to the controlled process or task 

environment. 

There are several reasons for developing human-machine control (Sheridan, 1992). First, it 

combines the advantages of the machine with the advantages of the human operator. Specifically, it 

achieves the accuracy, reliability and high yield of the machine with the cognitive capability and 

adaptability of the human. Moreover, by collaboration, the workload of the human operator is 

reduced and in the event of robot or human failure, either can reduce the damage. Second, it makes 

control possible even where there are time delays in communication between human and robot. 

Last, it saves lives and reduces cost by eliminating the need for the human operator to be present in 

hazardous environments (Sheridan 1992). 

According to Rodriguez and Weisbin (2003), human and robot skills are complementary. The 

human perception, acting and thinking capabilities in dynamic environments are unmatched to those 

of robots, but there can be huge potential risks to human safety in getting these benefits. Robots 

provide complementary skills in being able to work in extremely risky environments, but their 

ability to perceive, think, and act on their own is far from flawless. 

Technical developments in computer hardware and software now make it possible to introduce 

automation into virtually all aspects of human-machine systems. By taking advantage of human 

perception skills and the accuracy and consistency of autonomous systems, the combined human-
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robotic system can be simplified, resulting in improved performance (Parasuraman et al., 2000). For 

example, recent reliance on automation combining human skills has resulted in successful military 

and space exploration systems (Burke et al., 2004).  

A teleoperator is a machine that extends a person's sensing and/or manipulating capability to a 

location remote from that person (Sheridan, 1992). Virtually, by its definition, every human-robot 

collaboration system has a teleoperator. Since their first appearance in the 40’s, many teleoperated 

systems have been developed and employed for dealing with unstructured environments and in 

applications where there is clear and unavoidable danger for the human operator (Sheridan, 1992). 

In addition, robots are already increasingly being used in assistive technology, rehabilitation, 

surgery, therapy, service and entertainment domains. Methods which will enable easy and effective 

communication between robots and humans are crucial in all of these areas (Salter et al., 2004). 

According to Parasuraman et al. (2000), machine execution has been extended to functions that 

humans do not wish to perform, or cannot perform as accurately or reliably as machines. On the 

other hand, there is a large and rapidly developing class of technical systems that are dependent on 

human contribution for their operation.  

Various teleoperated systems, such as in space, nuclear reactors, and chemical cleanup sites 

provide excellent examples of human-robot collaboration in which the human operators plan and 

guide the motion of remotely situated devices through interaction with computer (Ivanisevic and 

Lurnehky, 1998). 

Bechar and Edan (2003), provide an empirical proof of the advantage of such collaborations in 

a target recognition task. According to their research, collaboration of human and robot increases 

detection by 4% when compared to a human operator alone and by 14% when compared to a fully 

autonomous system. In addition, when compared to the human alone, detection times of integrated 

systems are reduced by 20%. 

2.1.4 Human – Robot applications 

Different researches focus on different applications of human-robot collaboration. The 

following section reviews some examples.  

Ivanisevic and Lurnehky (1998), worked on improving the performance of human operators in 

tasks that involve motion planning and control of complex objects in environments with obstacles. 

They developed a visual computer interface that would allow the operator to visualize and perform 

the work in the task configuration space rather than in the work space. Essentially, the computer 

intelligence works alongside with human intelligence in real-time. Their results show that the 

proposed configuration space control mode performed significantly better than the traditional work 

space control. 
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Penin et al. (1998) developed a teleoperated system for electrical live-line maintenance. In their 

work the human operator commands the manipulators from a cabin on the truck via a pair of master 

arms, while he or she receives visual feedback through a vision system. With the operator on the 

ground, a great improvement in human safety has been introduced.  

Everett and Dubey (1998) worked on a new methodology to incorporate sensor and model 

based computer assistance into human controlled teleoperator systems. In this approach human 

operator input is enhanced but not superseded by the computer. 

Salter et al. (2004) focuses on the nature of interactions between children and robots. Their 

research shows how a simple and robust technique, based on a robot’s sensor readings, can be used 

to automatically detect and distinguish human contact. Their findings may have therapeutic 

implications for autistic children. 

In their research, Fletcher et al. (2005), present an automated detection and recognition system 

of road signs combined with the monitoring of the driver’s response. According to them, cars offer 

unique challenges in human-machine interaction and vehicles are becoming, in effect, robotic 

systems that collaborate with the driver. In their work, driver monitoring and real-time sign 

recognition were combined to correlate eye gaze with the sign direction, which together with the 

vehicle state developed a system that determines whether the driver should be made aware of the 

detected sign. 

Ayanna and Howard (2006) focused on role allocation in Human-Robot collaboration for space 

missions. Their objective was to determine an optimal task allocation between the human and robot. 

Shoval (2008) introduced a model for coordinated task allocation in distributed multi-agent 

(human or robot) systems operating in a dynamic environment. A centralized allocation 

methodology, in which all task allocation decisions are made by a single agent, was developed. His 

methodology considers a global view of the system, therefore, minimizing the total operational cost. 

Matthew et al. (2008) investigated the best way to facilitate the formation of mixed teams of 

humans and robots that could perform complex tasks in the real world. Using a natural language-

based multi-modal interface, they enabled simple interaction for humans, while effective 

coordination for robots was achieved via policy regulated behavior. Their use of an advanced 

network infrastructure further enabled robust and reliable communications among team members.  

Bernhardt et el. (2008) present an integrated European project called “PISA” which aims to 

develop intelligent assist systems (IAS) to support human workers in the assignments of  

assembling complex products. They developed methodologies which enable integration and 

collaboration between human workers and highly flexible devices and equipment (robot) in a 

qualitatively new and efficient manner. Table 2 presents various tasks of human-robot applications. 



10 

 

 

Table 2: Examples of Human – Robot systems’ applications in various tasks 

Task Application 

Tracking Driver aid, Security systems 

Manipulation 

Motion planning, Electrical live line 

maintenance, Surgery 

Navigation Flight control system, Legged robot walking 

Recognition 

Space exploration, Driver aid, Melon harvest, 

Military and Medical target recognition 

 

2.2 Human – Robot collaboration models 

2.2.1 Basic Structure of Human-Robot Collaboration Systems 

The basic structure of human-robot collaboration system, consists of an operator, controls, 

displays, a human-interactive computer (HIC), a barrier of distance and/or time, a task-interaction 

computer (TIC) and the robot  (figure 1). 

The HIC has two main tasks (Sheridan, 1992). First, it acts as the link between the human 

operator and the TIC, i.e., it receives input from the operator, translates it and sends the output to 

the TIC.  In addition, it receives input from the TIC, translates it, and sends it back to the operator. 

Second, it contains a data base and different algorithms which support the controlling and decision 

making process. 

The TIC is essentially the "brain" of the robot.  It receives input from the HIC and translates it 

into the appropriate commands which the robot, in turn, executes. Additionally, it sends the HIC 

feedback messages (Sheridan, 1992). 

 

 

 

 

 

 

Figure 1: Basic structure of human-robot systems (Sheridan, 1992). 

 

Human-robot collaboration models can be classified into qualitative and quantitative models. 

Qualitative models are characterized by focusing on helping design the systems, rather than on 

Displays  

Controls  

Operator  

HIC  TIC  

Robot  
Barrier  

Barrier  

Local 

loop  
Remote 

loop  
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optimization of the controlling process, which is the main focus of quantitative models. According 

to Sheridan (1992), even though there is an abundance of human-robot collaboration models, there 

is no single comprehensive quantitative or qualitative model. 

2.2.2 Qualitative Human-Robot Collaboration Models 

Focusing on designing the systems is achieved by answering the main question: which parts of 

the process should be automated? Sheridan (1992) lists some of the more specific questions they 

target, such as how much detail should the TIC transfer to the HIC and the HIC transfer to the 

operator? How should responsibilities be allocated among the TIC, the HIC and the human 

operator? 

The following section will review five quantitative models which attempt to answer the above 

questions. The first three focus on the human operator's characteristics, the fourth one defines 

human-robot collaboration levels, the last one is an iterative model with evaluation criteria. 

 

Five Operator Functions 

Sheridan (1992) proposes a serial model which lists five linked functions of the operator in 

human-robot collaboration (Fig. 2).  

The first function, planning, deals with what task to do and how to do it. This is the hardest 

function to model because it involves setting goals and determining strategy. Second is the 

Teaching function. The operator teaches the computer by translating goals and strategy into detailed 

instructions to the computer. Monitoring is the third function in which the human operator ensures 

that the robot executes the commands as planned and detects failures. Intervening, the fourth 

function can occur in two situations. In case the computer signals accomplishment of its part-task, 

the operator intervenes and commands new instructions. If the computer failed to execute the 

commands given, the operator intervenes, gives new instructions or fully takes over control. The 

last function is Learning.  The operator has the capability to learn from former experience of 

operating the system. This function is at a higher level than teaching because it is inductive, and 

involves reducing general ideas to specific instructions. 

In this model, the functions are operating within three nested control loops. The most inner 

loop, monitoring, takes place at brief intervals and makes minor system adjustments in the 

automatic control system that require no significant intervention. The middle loop closes from 

intervening back to teaching. This loop is like reprogramming, i.e., the human states new goals to 

process, and occurs at longer intervals. The outer loop closes from learning to planning. Learning 

and revision in task planning occur at even longer intervals. 
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 Figure 2: Five operator’s functions and their connections (Sheridan, 1992). 

 

Rasmunssen's levels of behavior  

Rasmunssen (1976) introduced a paradigm for describing three levels of human behavior. The 

first level is Skill based behavior, and it is analogous to what can be expected from a servo-

mechanism. The second level is Rule based behavior. It parallels an "artificial intelligent" computer 

in the sense of recognizing a pattern of stimuli and then triggering an "if-then" algorithm to execute 

an appropriate response. The third and last level of human behavior is Knowledge-based behavior. 

It includes consideration of alternative action based on various goals, decision and scheduling of 

implementation. Machines are known not to be good enough at this form of behavior. 

Sheridan (1992) parallels between this model and the Five Operator Functions model described 

above. The Skill level is analogous to the inner loop, monitoring, because they are both a well-

learned and largely perceptual motor skill. The Rule level is analogous to the middle loop, teaching 

and intervening, in the sense that they both involve instructions. The Knowledge level fits the outer 

loop, planning and learning, in the sense that both involve goals and problem formulation.  

 

S-C-R paradigm 

This model is actually a traditional classification of behavioral activity. The human behavioral 

activities are divided into three different categories. The first class is S - sensory which usually 

refers to exteroceptors, e.g., vision, hearing, taste. The second class is C – cognitive which means 

activity without apparent sensory or motor components, e.g., remembering and making decisions. 

And the third class is R – response which usually refers to muscle activity (Sheridan, 1992).  

 

 

 

 

 

 

 

 

Plan  Teach  Monitor  Intervene Learn  
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Levels of Human-Robot collaboration 

Sheridan (1992) divided human-robot collaboration into ten levels from fully autonomous, 

without human intervention, to fully manual (Table 3).  

 

Table 3: Levels of automation of decision and action selection (Sheridan, 1992) 

HIGH 10. the computer decides everything, acts autonomously, ignoring the human 

 9. informs the human only if it, the computer, decides to 

 8. informs the human only if asked to, or 

 7. executes automatically, then necessarily informs the human, and 

 6. allows the human a restricted time to veto before automatic execution, or 

 5. executes that suggestion if the human approves, or  

 4. suggest one alternative 

 3. narrows the selection down to a few, or 

 2. the computer offers a complete set of decision/action alternatives, or 

                LOW 1. the computer offers no assistance; human must make all decisions and actions 

 

Iterative model with evaluation criteria  

Parasuraman et al. (2000) outlined a model for types and levels of automation which attempt to 

provide a framework and an objective for making such choices. This model proposes that 

automation can be applied to four generic classes of functions:  1) Information acquisition. 2) 

Information analysis. 3) Decision and action selection. 4) Action implementation. Each class is 

independent and has its individual degree of automation which is determined by applying Sheridan's 

automation scale (Table 3). The model has two evaluation criteria.  The primary criterion concerns 

the reduction in human capabilities due to the degree of automation.  The second criterion concerns 

the automation reliability. Being an iterative model, the degree of automation can be changed after 

each evaluation.  

 

Taxonomy of Human-Robot interaction 

Scholtz (2002) describes five roles that a human may take when interacting with a robot: 

supervisor, operator, mechanic, peer and bystander. A supervisor monitors and controls the robot’s 

overall behavior, and is the only one authorized to change the greater goals. An operator is called 

upon to modify plans or actions when the robot's behavior does not match the greater goals. A 

mechanic needs to physically change the robot’s hardware or software. A peer can command the 

robot within the greater goals. It is assumed that even with solid interfaces, peers will not have the 

necessary time to plan and change the goals. If they do have time then the role switches to 
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supervisor. A bystander is given a subset of interactions with the robot. The bystander should be 

advised of the robot's capabilities with which he can interact. 

 

2.2.4 Quantitative Human-Robot Collaboration Models 

Human and controlled process as invariant 

Since the 1950s there has been much effort devoted to using conventional linear control theory 

to model simple manual controls systems, in which the human operator is the sole participant in the 

loop control element. The motivation for this was the need to establish predictive models for control 

where humans are involved, e.g., aircraft (Sheridan, 1992). 

The first model viewed the human operator factor as independent from the controlled process, 

but soon this was found to be impractical, since the characteristics of the human operator proved to 

be very much dependent upon the controlled process. Following this, a proposal was made to model 

the human operator and the controlled process as a single element. It was assumed that there would 

be only minor variations of the combined human and process from application to application. The 

result is the simple crossover model of McRuer et al. (1965), which has the form: 
j TX Ke

e j

ω

ω

−

= .  

This is virtually a combined pure time delay and integrator, where X is the output, e is the error and 

ω  stands for the frequency. The variations of parameters K, the gain, and T, time delay, are well 

established in the literature.  Figure 3 presents a comparison between McRuer’s model block 

diagram and the simple compensatory model (Sheridan, 1992).  

 

 

Figure 3: Simple compensatory manual control (human and controlled process are independent) vs. McRuer’s 

simple crossover model (human and controlled process act as an invariant combination). (Sheridan, 1992).  
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2.2.5 Human – Robot collaboration models' complexity 

According to Sheridan (1992), human-robot control involves complex and flexible systems 

where operators have free will in planning, setting goals, and evaluation. Setting goals and decision 

making seems to be the most difficult aspect of human-robot control to model (Sheridan, 1992). In 

addition, modeling free will seems paradoxical, since free will is determined from within the 

operator and not by an outside source. This is also the reason why mental events can only be 

inferred and cannot be directly measured.  

Another difficulty in modeling arises when there is free interaction between human and 

computer. It is difficult to determine which behavior is a result of true human decision making and 

which occurs following the computer's advice.  

Moreover, according to Shoval (2008), as the science of robotics advances, specifically in terms 

of computation capabilities, speed and availability, determining the optimal automation level is 

becoming more and more composite. 

 

2.3 Quantitative model for integrated systems in target recognition tasks 

Target recognition is a common task and usually an essential part of a robotic system. However, 

target recognition in unstructured environments, e.g., agriculture, is characterized by a low 

detection rate and a high false alarm rate (Bechar et al., 2006). 

Bechar et al. (2006) developed a quantitative methodology for determining the optimal 

collaboration level of an integrated human-robot system in target recognition tasks. Based on 

Sheridan’s scale of “action selection and automation of decision” (Table 3), Bechar et al. (2006), 

defined, tested and evaluated four basic levels for Human-Robot collaboration. The system 

objective function is designed to enable determination of the expected value of task performance, 

given the parameters of the system, the task, and the environment (Bechar et al., 2006). 

Statistical analysis results indicate that the best system performance, the optimal performance 

measures values, and the best collaboration level depends on the task, the environment, human and 

robot parameters, and the system characteristics (Bechar et al., 2006). 
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3. System Objective Function (Bechar, 2006) 

This chapter is based on the model developed by Bechar in his Ph.D. thesis (Bechar, 2006). 

3.1 Definitions 

This research evaluates the performance of an integrated human-robot system with the 

following definitions: 

� ‘System’ refers both to the 'human' and 'robot' subsystems and indicates their overall   

combined performances and parameters.  

� ‘Robot’ refers to an autonomous robot which calculates its outcomes based on its algorithm.  

� ‘Human’ refers to a human operator who operates the system fully manually.  

� 'Environment' refers to the surrounding conditions the 'system' operates in such as the target 

probability and number of objects. 

� ‘Task’ refers to the specific parameters of the ‘system’ which are derived from the system’s 

objective such as the reward gained from detecting a target.    

3.2  Assumptions 

� The system is serial: the robot first inspects the object and then decides whether it is a target 

or not; subsequently, the human, which is exposed to the robot’s decision, inspects the 

object and makes his decision. 

� The robot’s decision is independent, i.e., the human’s performance has no influence on the 

robot’s performance. 

� The human, robot, and system performances do not influence the appearance of target and 

non-target objects. 

� The human, robot, task, and environmental parameters are stable over time. 

� Both target and non-target objects are normally distributed and have equal variance. 

3.3 Operational levels 

The model includes four different operational levels based on Sheridan’s (1978) scale of 

“action selection and automation of decision”.  1) H: The human operator detects and marks the 

desired target single-handed. This level is compatible to level 1 on Sheridan’s scale.  2) HR: The 

human marks targets, aided by recommendations from the robot, i.e., some objects are 

automatically marked by a robot detection algorithm, the human operator responsible enters the 

robot’s correct detection into the target bank and marks targets which the robot missed. This level is 

compatible to levels 3-4 on Sheridan’s scale. 3) HOR: The human supervises the robot. Objects are 
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identified automatically by the robot’s detection algorithm and inserted into the target bank, 

compatible with levels 5-7 on Sheridan’s scale. The human’s assignment is to cancel false 

detections and to mark the targets missed by the robot system. 4) R: Fully autonomous, the targets 

are marked automatically by the robot, compatible to level 10 on Sheridan’s scale. 

 

3.4 Objective function – Equations and Notations 

The aim is to maximize the objective function. In target recognition tasks, the system has four 

different possible outcomes: Correct Rejection (CR) occurs when the system didn’t mark a non-

target object. False Alarm (FA) occurs when the system marked a non-target object. Miss (M) 

occurs when the system didn’t mark a target object and Hit (H) occurs when the system marked a 

target object. Each of the possible outcomes has a weight in the objective function. The reward for 

detecting a target is notated as HV . The penalty for missing a target is notated as MV . The penalty for 

false alarm is notated as FAV
 
and the reward for correct rejection is notated as CRV . In addition, the 

objective function considers the operational costs which are notated as TV . The objective function 

for each object is illustrated in equation (1): 

(1) 
I H M FA CR TV V V V V V= − − + −   

Equations (2) to (5) illustrate the explicit part of each possible outcome.  

(2) H S H HV N P p W= ⋅ ⋅ ⋅   

(3) 
M S M MV N P p W= ⋅ ⋅ ⋅  

(4) (1 )FA S FA FAV N P p W= ⋅ − ⋅ ⋅  

(5) (1 )CR S CR CRV N P p W= ⋅ − ⋅ ⋅
 

All these equations are composed similarly where N is the number of objects in the analyzed 

image and Ps is the probability for an object to be a target and therefore (1-Ps) is the non-target 

probability. These parameters characterize the environment conditions. The third parameter, px, 

symbolizes the probability of the system for one of the possible outcomes, where index x can be H, 

M, FA or CR. This parameter considers the human and robot characteristics. The last parameter, 

WX, symbolizes the weight’s value for each possible outcome, where index x can be H, M, FA or 

CR. The value of each weight is a task parameter and is determined upon the system’s mission.   

The system’s probability of an outcome is influenced by the serial structure of the model and is 

composed of the robot and the human probabilities. Equations (6), (7) illustrate the system 

probability for hit and false alarm. 
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(6) ( )1
S r rh r hH H H H Hp p p p p= ⋅ + − ⋅  

(7)       ( )1
S r rh r hFA FA FA FA FAp p p p p= ⋅ + − ⋅  

        The system has two options for detecting a target. One possibility is for the robot to detect a 

target, 
rHp , and the human to confirm the robot detection, 

rhHp . Second is that the robot could miss, 

( )1
rHp− ,  but the human would detect the target, 

hHp . The system probability for miss is 

complementary to hit and therefore equal to (1- 
Hp ). The FA probability is computed in the same 

way as the H probability but with the FA probabilities. The system probability for CR is 

complementary to FA and therefore equal to (1- FAp ). The system operational cost includes both 

costs of time (Vt) and action (Vc) as illustrated in equation (8). 

 

                                                      Wa 

 

(8) ( )(1 )T S t S H S FA CV t W N P p N P p W= ⋅ + ⋅ ⋅ + ⋅ − ⋅  

 
                Vt                             Vc     

The cost associated with time (Vt) is composed of tS which is the system time that is required to 

analyze an image, and Wt which is the cost of one time unit.  The cost associated with action (Vc) is 

influenced only by hit or false alarm outcomes (Wa), since there is an actual action of the robotic 

system for these outcomes only. Wc is the cost of one object recognition operation.  

The system time, tS, consists of the time for the human operator (HO) to confirm the robot hits, 

the time for the HO to hit additional targets, the time for the HO to correct the robot false alarms, 

the time for the HO to mark false alarms, and the robot time to process the image and to perform 

hits or false alarms. Also included in ts is the time it takes the human to decide whether an object 

has been correctly rejected (CR) or missed (M). Equation (9) illustrates the explicit of ts. 

 

(9) 

( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) rCRFAFASCRFAFAS

MHHSMHHS

FAFAFASFAFAFAS

HHHSHHHSS

ttp1p1P1Ntp1pP1N

tp1p1PNtp1pPN

tpp1P1NtppP1N

tpp1PNtppPNt

hhrrhrhr

hhrrhrhr

hhrrhrhr

hhrrhrhr

+⋅−⋅−⋅−⋅+⋅−⋅⋅−⋅+

+⋅−⋅−⋅⋅+⋅−⋅⋅⋅+

+⋅⋅−⋅−⋅+⋅⋅⋅−⋅+

+⋅⋅−⋅⋅+⋅⋅⋅⋅=

 

 

tHrh is the HO time required to confirm a robot hit, tHh is the HO time required to hit a target 

which the robot did not hit, tFArh is the HO time needed to correct a robot false alarm, tFAh is the HO 

false alarm time, tMrh is the HO time lost when a robot hit is missed, tMh is the HO time invested 

when missing a target which the robot did not hit, tCRrh is the HO time to correctly reject a robot 
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false alarm, tCRh is the HO correct rejection time, and tr is the robot time. It was assumed that each 

of the human time variables represents a superposition of a decision time, td, and a motoric time, tm, 

in accordance with the collaboration level. The time parameters for the H, HR and HOR 

collaborations are shown in equations (10), (11), and (12), respectively. 

(10)   

Hh d m

FAh d m

Mh d

CRh d

t t t

t t t

t t

t t

= +

= +

=

=

                  (11)    

Hh d m

FAh d m

Mh d

CRh d

Hrh d m

FArh d m

Mrh d

CRrh d

t t t

t t t

t t

t t

t t t

t t t

t t

t t

= +

= +

=

=

= +

= +

=

=

                    (12)     

Hh d m

FAh d m

Mh d

CRh d

Hrh d

FArh d

Mrh d m

CRrh d m

t t t

t t t

t t

t t

t t

t t

t t t

t t t

= +

= +

=

=

=

=

= +

= +

 

 

Table 4 presents the objective function parameters divided into four main groups. 

 

Table 4: Summary of the objective function parameters into four main groups 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5 Signal Detection Theory 

To simplify the objective function and facilitate its analysis robot and human performance measures 

and overall system performance were described using signal detection theory parameters based on 

Bechar (2006).  

Environment  Task  

orientation  

Robot  

performance  

Human  

performance  

N 

PS  

WH 

WM  

WFA 

WCR  

Wc  

Wt  

pHr  

pFAr  

tr  

pHh  

pHrh  

pFAh  

pFArh  

tHh  

tHrh  

tFAh  

tFArh  

tMh  

tMrh  

tCRh  

tCRrh  
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            Background 

Signal detection theory (SDT) is a method of assessing the decision making process for binary 

categorization decisions. In detection, a detector attempts to distinguish two stimuli, noise (N) and 

signal plus noise (S + N).The detector performance analyses are based on hit and false alarm rates, 

where a hit is an outcome when a person correctly identifies a signal when one is presented, and a 

false alarm is the identification of a noise. The detector’s ability to distinguish between noise and 

signal depending on the overlap between the distributions, quantified by d', the normalized (by the 

standard deviation) difference between their means. The placement of the criteria determines both 

the hits (”yes” responses to signals) and the false alarms (”yes” responses to noise). When the 

criterion is high (i.e., conservative), the detector will result in few false alarms, but also few hits. By 

adopting a lower criterion (i.e., liberal), the number of hits increases, but at the expense of 

increasing the false alarm rate. This change in the decision strategy does not affect d', which is 

therefore a measure of sensitivity that is independent of the criterion placing. In this work the 

criterion is represented by β which is the likelihood ratio of the two distributions at the cutoff point 

x. Figure 4 illustrates an example of SDT. 

 
 

Figure 4: An example of binary decision analyzed with SDT 

 

Signal detection theory allows to compute the probability of hit and false alarm in terms of d’ 

and β and therefore by applying SDT to the system objective function the numbers of target 

identification parameters are reduced and the analysis is simplified (Appendix II). 

Applying SDT into the system objective function requires the following assumptions about the 

human and robot target identification parameters: the targets and non-target objects are normally 

distributed and have identical variance even though they are independent.  

X 

Noise Signal + Noise 

µµµµS 
µµµµN 

x 

d’ 

β 
p(x)  
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Object  
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zr ≥ βr 

Yes 

No 
Zh ≥ βh 

Zh ≥ βrh 

Signal 

Noise 
Robot 

Signal 

Noise 

Yes 

Yes 

No 

No 

Decision Human 

Modified SDT for the model 

Bechar considered the human-robot system as a system with two detectors. The performance of 

the first detector (robot) is determined by its sensitivity (d’r) and it criterion (βr). The second 

detector (human) uses its sensitivity (d’h) and two criteria; one for objects already marked by the 

robot, βrh, and one for objects unmarked by the robot, βh (Figure 5). 

 

Figure 5: Application of modified SDT for the model 

 

3.6 Model’s flowchart 

The model assumes that the system is serial and works in the following way: first the robot 

examines the object and decides if it is a target or not. Then the human operator has to make two 

decisions: One for the objects the robot marked and one for non marked objects. Figure 6 depicts 

the model’s work flow.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Flowchart of the model 
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4. Methodology  

4.1 Overview 

The objective of this work is to evaluate the performance of different integrated human-robot 

systems for target recognition tasks. Based on Bechar’s model, a comprehensive numerical analysis 

was conducted by examining the influence of human, robot, environment and task parameters on 

different integrated systems. 

The numerical analysis of the global objective function was conducted on a PC with Matlab 

7.1™. Bechar (2006) analyzed the objective function excluding the parts of the reward for correct 

rejection (WCR, tCRr, tCRh, tCRrh equal to zero) and the penalty for miss (WM, tMr, tMh, tMrh equal to 

zero). This thesis expanded Bechar's previous work by conducting a numerical analysis on the 

complete objective function including all parts. The analysis focused on two major objectives which 

were not covered in Bechar’s work: determining the best operational level for various systems and 

investigating the operational costs.  In addition, a sensitivity analysis of different parameters was 

conducted. The Matlab™ code is presented in Appendix III. 

 

4.2 Best Operational Level Analysis 

The analysis focused on the influence of different human and robot sensitivity combinations (d'h 

and d'r) and different target probabilities (PS) on the best operation level of various systems. 

Integrated human-robot systems have different target recognition assignments and goals, thus, 

they differ in their design. For example, a mine finding system is designed to prioritize detecting 

targets (mines), which implies a high value for the hit weight (WH). Contrastingly, medically 

oriented systems prioritize minimization of false alarms, which implies a high value for the false 

alarm weight (WFA). In this thesis we focused on analyzing the performance of various integrated 

systems; by setting different values for the objective function weights (WH, WFA, WCR, and WM) 

various systems were simulated and analyzed.  

 

Simulation parameters 

In order to simulate different systems with different assignments three ratio parameters between 

the objective function weights were set; the ratio between false alarm and hit weights, WFA2H, the 

ratio between correct rejection and miss weights, WCR2M, and the ratio between miss and hit, WM2H. 

The values of these ratios were set for 0.1, 1 and 10 in order to create a drastic difference between 

the objective function weights. The value of hit weight, WH, was set to 50 and all the other weights 
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were determined according to the ratios. For example, if WFA2H = 0.1, WCR2M = 0.1 and WM2H = 1 

then the values of the other weights will be WFA = 5, WCR = 5, WM = 50. The probability for target, 

PS, ranged from 0.1 to 0.9. The human sensitivity, d’h, and the robot sensitivity, d’r, ranged from 0.5 

to 3. The values of the different parameters of the simulation were extracted from a preliminary 

experiment performed by Bechar et al. (2006). The operational cost weights were constant where 

the cost for one system action was set to Wc= 2 and the cost for one time unit was set to Wt= 2000 

hr-1. The number of objects in each task was set to N= 1000. The decision time for all human time 

parameters was set to td=5 sec/object, and the human motoric time was set to tm=2 sec/(detected 

object). The robot time was set to tr=0.01 sec/object. In addition, all analyses were performed for 

optimal likelihood ratios. The optimal likelihood ratios, βr, βh, and βrh, were determined in the range 

between the logarithm of -4 and the logarithm of 4, in order to cover the available hit and false 

alarm probabilities. Table 5 presents a summary of the different variables which were used in the 

analysis. 

 

Table 5: Summary of the variable parameters analyzed in the research 

Parameter Description Range 

WFA2H Ratio between the value of false alarm and hit 0.1,1,10 

WCR2M Ratio between the value of correct rejection and miss 0.1,1,10 

WM2H Ratio between the value of miss and hit 0.1,1,10 

d’r The robot sensitivity  0.5 - 3 

d’h The human sensitivity 0.5 - 3 

PS Target probability  0.1 – 0.9 

 

4.3 Operational Costs Analysis 

A comprehensive analyses of both operational cost parts; time and action were conducted.  

The operational costs influence the objective function score and therefore the best operation 

level map. The model’s operational cost (VT) consists of cost associated with time (Vt) and 

operation (Vc) and is described in chapter 3.6, equation (8).  The cost as a function of time, Vt, is 

affected by the number of decisions which the system (robot and human) has to make, how fast 

these decisions are made, and the cost per time unit of system operation.  The cost as a function of 

operation, Vc, is affected by the cost per one operation of the robotic arm (action) and the number of 

times an action is required.  Since the robotic arm actually moves only as a result of false alarms or 

hit outcomes, this cost is only present when one of these results is obtained. 
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4.4 Sensitivity Analysis 

A sensitivity analysis of the optimal criteria was conducted. Since the numerical analysis was 

conducted for optimal criteria, the sensitivity analysis focused on investigation of the influence of 

small deviations from the optimal value of each β. The sensitivity analysis was performed for the 

three betas: βr, βh and βrh for a given situation. The logarithm of the analyzed beta ranged from -4 to 

4 in order to cover wide range of criteria. In addition, since in real world applications the human 

and robot sensitivities are not constants and can be changed during a work, sensitivity analysis of 

these two parameters were also conducted.  
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5. Best Operational Level Analysis  

The numerical analysis focused on the influence of different human and robot sensitivity 

combinations (d'h and d'r) and different target probabilities (PS) on the best operational level of 

different systems. Figure 7 shows system performance for different human and robot sensitivities 

combinations. Each surface represents one of the system’s possible collaboration levels. This figure 

illustrates the influence of the sensitivities on the objective function score (z axes) and the highest 

score for each sensitivities combination which is composed of the highest surface created from the 

surfaces intersections of the different operational levels (its perimeter is marked with a black solid 

line). Furthermore, each intersection in this area represents shifting between the operational levels 

to maintain optimal performance. 

 

Figure 7: The influence of the human and robot sensitivities on the system’s performance for each operational 

level – an example. 

 

5.1  Definition 

The best operational level is defined as the level which under specific task parameters, achieves 

the highest objective function score (VI). Analysis was conducted on a 2D graph that illustrates the 

best operational level map (Figure 8) where each operational level is represented by a different 

color. In the case presented, HR, HOR and R levels are the best levels in different areas of the 

sensitivity space. This example indicates that for the same task the best operational level can change 

from one level to another. Different task, human, robot, or environment parameters will result in 

different operation level maps. 
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Figure 8: Best operational level map. HR – Cyan, HOR – Yellow, R – red – an example.   

 

5.2  Results 

Due to the multitude of results, the first objective was to find any common behavior between the 

different systems which were analyzed. After investigating all the different operational level maps 

which were produced by the analysis, it was found that the different maps (which represent different 

systems) can be classified into two main types of systems. Classification was based on the influence 

of the target probability on the best operational level maps. It was found that the two types have 

opposite tendencies as a function of the target probability, i.e., the tendency of changes in the best 

operational level maps as a function of the target probability is opposite for the two types.  The first 

type, denoted hereon as 'Type 1', consists of systems geared towards minimizing false alarms. This 

goal can be reached by setting proportionately higher rewards for correct rejections and/or higher 

penalties for false alarms. The second type denoted hereon as 'Type 2' consists of systems geared 

towards detecting targets when one is presented. This goal can be achieved by setting 

proportionately higher rewards for hits and/or higher penalties for misses.   

Type 1: High priority to minimizing false alarms 

The analyses indicated that as the target probability, PS, increases, the area of R level, in the 

best operational level map, is reduced. Furthermore, results indicated that HR is the best level only 

when the human sensitivity, d’h, is higher than the robot sensitivity, d’r. It should be considered that 

when the target probability, Ps, is high, HOR level is preferable in most of the sensitivity space. 

However, when robot sensitivity is higher than human sensitivity the best level is R. The H level 

(human performs solely) was never the best operational level (Figure 9). Additional results are 

presented in Appendix IV. 
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Figure 9: Example of ‘Type 1’ systems best operational level maps for different target probabilities. HR – Cyan, 

HOR - Yellow and R – Red. 

 

Type 2: High priority to target detection 

As opposed to 'Type 1' systems, in 'Type 2' systems, an increase in the target probability, PS, 

increases the area of R level in the best operational level map. Moreover, for high and intermediate 

target probabilities, R was found to be the best level when the sensitivity of the robot is higher than 

that of the human. HR was found to be the best operational level only when the target probability 

was low, and the human sensitivity was higher than the robot sensitivity. For very low target 

probability (PS=0.1), HR level is the best operational level in more cases than HOR, although as 

target probability increases HOR performs better in more cases than HR (Figure 10). Similar to the 

findings in 'Type 1' systems, the 'Type 2' systems’ manual mode (H) was never the best level. 

Additional results are presented in Appendix V. 
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Figure 10: Example of ‘Type 2’ systems operational level maps for different target probabilities. HR – Cyan, 

HOR - Yellow and R – Red. 

 

System Properties Analysis 

The analysis of best operational level reveals symmetry between hits and false alarms ratio, 

WFA2H, and between correct rejection and miss ratio, WCR2M, i.e., the same operational level map 

was generated when WFA2H =X, WCR2M =Y and WFA2H =Y, WCR2M =X where X and Y are the ratios 

values independent of  the system’s type. In order to examine these findings a further analysis of the 

objective function score was conducted. The analysis of the objective function score was conducted 

by analyzing contour graphs in the human and robot sensitivity space for different target 

probabilities (Figure 11).  

 

Figure 11: Objective function score, the isobar lines represent equal value score.  
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For both types, the symmetry discovered in the best operational level analysis revealed that 

different systems have identical best operational level maps. However, while there is an overlap in 

the best operational level maps of the systems, their objective function score is different. The 

difference is derived from the way these systems achieve their goal - minimizing false alarms for 

‘Type 1’ and detecting targets for ‘Type 2’. In ‘Type 1’, while some of the systems achieve the goal 

of minimizing false alarms, by giving high penalty for false alarms, other systems achieve it by 

giving high reward for correct rejections. In ‘Type 2’, while some of the systems achieve the goal of 

detecting targets, by giving high reward for hit, other systems achieve it by giving high penalty for 

miss.  

Figures 12 and 13 present an example for these results: the objective function score maps of 

two different ‘Type 2’ systems show an identical operational level maps, which is presented in 

figure 10. Additional results are presented in Appendix VI. 

 

Figure 12: Example of ‘Type 2’ objective function graph where the system’s goal achieved by giving high penalty 

for ‘miss’ proportionally to ‘hit’ 
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Figure 13: Example of ‘Type 2’ objective function graph where the system’s goal achieved by giving high reward 

for ‘hit’ proportionally to ‘miss’ 

 

Actually, these findings indicates that there is symmetry between hit weight (WH) and miss 

weight (WM) and symmetry between correct rejection weight (WCR) and false alarm weight (WFA). 

This yields that, if we set {WH = X1, WM = X2, WCR = Y1, WFA = Y2}, (X1 ≠ X2, Y1 ≠ Y2), then the 

same best operational level maps will appear for: {WH = X2, WM = X1, WCR = Y1, WFA = Y2}, {WH 

= X2, WM = X1, WCR = Y2, WFA = Y1}, {WH = X1, WM = X2, WCR = Y2, WFA = Y1}. Notice that 

each set represents a different system. An example of the last finding is presented in Table 6.    

 

Table 6: Example of different systems with the same best operational level maps 

WH WM WCR WFA 

20 5 10 7 

5 20 10 7 

20 5 7 10 

5 20 7 10 

 

These results led to further analysis, aimed at testing the shift in the best operational level maps, 

which occurs in the transition between the symmetrical weights.  In order to perform this analysis, a 

new variable, μ, was computed. μ equals to the difference between the symmetrical weights, 

divided by ten (μ = (WH-WM)/10 or μ = (WCR-WFA)/10).  In each of the iterations in the simulation, 
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μ was deducted from the highest valued weight and added to the lowest valued weight.  A pseudo 

code is presented in Appendix VII. 

Last analysis revealed that for all the analyzed systems the same best operational level map was 

received, i.e., the symmetry attribute depends upon the difference between the weights.  In fact, this 

further analysis extended the symmetry attribute and it was found that the system type (1 or 2) 

depends upon the ratio between ∆1 = WCR-WFA and ∆2 = WH-WM. If ∆1/∆2 > 1 the system classified 

as ‘Type 1’. If ∆1/∆2 < 1 the system classified as ‘Type 2’. In cases where ∆1/∆2 = 1 the system can 

be considered as ‘Type 1’ or ‘Type 2’. This can be assumed as a new property of the objective 

function. Figure 14 presents these findings.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Figure 14: Example of the symmetry property. On the right graphs, ∆1/∆2 > 1 and therefore, these systems are 

‘Type 1’. On the left graphs, ∆1/∆2 > 1 thus, these systems are considered as ‘Type 2’. Different ratios will produce 

different best operational level maps. 

 

All the analyses were conducted with optimal βs. Equation 13 presents the expression for 

optimal β. 

  

(13) * (1 )
*( )S CR FA

S H M

P W W

P W W
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− −
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From equation 13 it can be seen that the optimal β is composed of two parts: the ratio between 

the a-priori probabilities (noted as A) and the ratio between the weights (∆1/∆2, noted as B). From 

the analysis of the objective function, it was found that the two system types differ as a function of 

PS and that the system’s type depends on the ratio ∆1/∆2.  These results are related to both parts of 

the optimal β equation. Note that the a-priori probability (PS) is an unknown parameter which 

depends on the environment and cannot be controlled by the system’s designers. Thus, this 

parameter has not been considered as a parameter which defines the system’s type but it does affect 

the system’s performance. On the other hand, the ratio between the weights (∆1/∆2) depends on the 

system’s tasks and can be controlled by the system’s designers. Thus, this ratio defines the system’s 

type. 
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6. Operational Costs Analysis 

The operational costs analyses were conducted ‘Type 1’ and ‘Type 2’ systems where the 

weights’ ratios were set to ∆1/∆2 = 10 and ∆1/∆2 = 0.1 accordingly. 

6.1 Time Cost Analysis 

The cost of time, Vt, is composed of the system time that required to analyze an image, ts, 

multiplied by the time cost weight, Wt, which is the cost of one time unit (q.v. chapter 3.4 equation 

8).  

6.1.1 ts analysis 

The system time is affected by the target probability (PS), the human's and robot's sensitivities 

(d’r and d’h), thresholds (βs) and reaction times (q.v. chapter 3.4 equation 9). Since the robot’s 

reaction time depends on computer hardware and algorithm complexity, it was assumed that the 

effect of the system situation on it can be neglected, i.e., the robot time is considered to be 

deterministic. On the other hand, the human decision time, td, cannot be assumed to be 

deterministic. The human operator's decision time depends on many variables, such as; the 

operator's skills, fatigue, image complexity.  It should therefore be considered as variable. 

The analysis focused on the effects of each of the parameters influencing ts which were 

described above: PS, d’r, d’h and td.  Figure 15 presents ‘Type 1’ analysis. These graphs demonstrate 

the effect of target probability and human and robot sensitivities on each of the operational levels. 

As previously explained, robot time is treated as a constant and therefore this level is not presented.  

Each surface represents a different target probability, axes x and y represent the robot and human 

sensitivities respectively, and the z axis is the system time (ts).  
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Figure 15: Time cost analysis of ‘Type 1’. The effect of different sensitivities and target probabilities on the 

system time 

 

In H operational level, the ‘hit’ and ‘false alarm’ outcomes are associated with longer reaction 

times than ‘miss’ and ‘correct rejection’, since these outcomes also involve a motoric motion (q.v. 

chapter 3.4 equations 10, 11, 12). Results show that for level H, as target probability and human 

sensitivity increases, ts is higher. These results are supposedly counter-logical, as one would expect 

that as human sensitivity rises, his/her discerning ability improves, causing decision-making time to 

shorten, and therefore, system time to diminish. Actually, as human sensitivity improves, the 

probability of detecting a target (probability for hit) rises, which leads to a larger amount of longer 

reactions to be made, and therefore, the total amount of time the system operates is longer.  

The difference between HR and HOR operational levels in the model’s objective function 

manifests itself by the ts value. Thus, the graphs of these operational levels are so different. In HR 

level, the robot first marks objects it considers as a target and then the human decides whether these 

objects are targets, i.e., enters the object to the target bank, or non-targets, i.e., erases the robot’s 

mark. Thus, in HR level, similarly to H level, ‘hit’ and ‘false alarm’ outcomes are associated with 

longer reaction times than ‘miss’ and ‘correct rejection’. Therefore, HR level behaves similarly to 

the H operational level. In HOR level, the robot first enters into the target bank objects it considers 

as targets, then the human enters objects the robot misses, and rejects wrong entries of the robot. 

Thus, in HOR operational level, contrary to H and HR levels, ‘miss’ and ‘correct rejection’ 

d’r 
d’h 

d’r 

d’h 

d’r 
d’h 

ts ts 

ts 
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outcomes are associated with longer reaction time than ‘hit’ and ‘false alarm’. Consequently, HOR 

level graph is opposite to H and HR graphs. 

The results for ‘Type 2’ system are presented in figure 16.  

 

Figure 16: Time cost analysis of ‘Type 2’. The effect of different sensitivities and target probabilities on the 

system time 

 

Similarly to the results of ‘Type 1’, as target probability increases, the value of ts increases in H 

and HR levels. However, contrary to the results of ‘Type 1’, as human and robot sensitivities 

increase, ts decreases in these operational levels. This result is derived from the difference between 

‘Type 1’ and ‘Type 2’. In ‘Type 1’ systems, an increase in the system’s (human and robot) 

sensitivity mostly influences the number of ‘hits’ which increases as well and therefore ts increases. 

However, in ‘Type 2’ systems, an increase in the system’s sensitivity mostly influences the number 

of false alarms which decreases, thus ts decreases.     

HOR graph behaves similarly to the graph of ‘Type 1’ except that the surfaces of Ps = 0.1 (red 

surface) and Ps = 0.9 (green surface) are opposite. This result reflects the opposite tendency 

between the two types as a function of the target probability.   

6.1.2 td analysis 

In order to investigate the influence of human decision time, td, on the system performance, its 

value was ranged from 2 to 14 seconds. Figure 17 presents ‘Type 1’ analysis for the best operational 

level maps as a function of Ps, td, d’h and d’r.   
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Figure 17: ‘Type 1’ results for analysis of best operational level maps for different td and Ps. Columns are for 

different td and rows for different Ps. Each map is represented in the sensitivity space where x axis is d’r and y 

axis is d’h. 
 

 

For low target probability (Ps = 0.1), a change in decision time is critical and for values equal 

and above td = 8 seconds the best level is only R.  In contrast, for a medium (0.5) or high (0.9) 

target probability, a change in decision time has only low influence on the best operational level 

maps.  In order to compare between the influences of the td and Ps, further analysis, which examined 

these parameters together, was performed (Figure 18). 

 

Figure 18: Decision time analysis of ‘Type 1’. Effect of td and Ps on VT (left graph) and VI (right graph)  

 

These graphs present the effect of PS and td on the objective function score (VI, right graph) and 

on the operational costs (VT, left graph, values are absolute).  Results show that on VT, decision- 

time, td, has a larger effect than Ps, i.e., an increase in this parameter leads to a sharper increase in 

operational costs. In contrast, on the total score, VI, the results are opposite and PS is the parameter 

td 
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which has a larger effect.  Thus, td's level of influence on the system’s overall performance is 

depended upon the ratio VT/VI.  As this ratio gets larger, td is relatively more effective than PS.  For 

both graphs td has an identical effect on levels H, HR, and HOR. 

 ‘Type 2’ systems’ results are presented in figures 19 and 20. 

 

Figure 19: ‘Type 2’ results for analysis of best operational level maps for different td and Ps. Columns are for 

different td and rows for different Ps. Each map is represented in the sensitivity space where x axis is d’r and y 

axis is d’h. 

   

For low (0.1) and medium (0.5) target probability, a change in decision time has a great 

influence on the best operational level maps. As td increases, R level is more preferable.  

 

 

Figure 20: Decision time analysis of ‘Type 2’. Effect of td and Ps on VT (left graph) and VI (right graph)  

 

 

 



38 

 

Similarly to the results of ‘Type 1’, while td has a larger effect than Ps on VT, the target 

probability has a larger influence than td on the total score, VI.  Thus, td's effect is independent of 

the system’s type.   

6.1.3 Wt Analysis 

The cost of a time unit, Wt, depends upon the type of assignments the system has to perform 

and the system’s (human and robot) efficiency and effectiveness.  In order to examine the effect of 

Wt, this parameter received variable values, between 2000 and 10000 hr
-1

. Figure 21 presents ‘Type 

1’ analysis for best operational level maps for different values of Wt and different target 

probabilities. 

 

 

Figure 21: ‘Type 1’ results for analysis of best operational level maps for different Wt and Ps. Columns are for 

different Wt and rows for different Ps. Each map is represented in the sensitivity space where x axis is d’r and y 

axis is d’h 

 

Results show that by increasing Wt the R level is more dominant. However, for all the target 

probabilities, Wt, has a low influence on the best operational level maps.  In order to further 

examine these results, Wt’s influence was compared to Ps’s influence on operational costs, and on 

total system performance (Figure 22). 

Wt 
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Figure 22: ‘Type 1’ analysis of the effect of Wt and Ps on VT (left graph) and VI (right graph)  

 

A change in Wt and Ps has an almost identical effect on H, HOR, and HR levels in both graphs.  

On R level, a change in Wt almost does not have any effect. This finding is a result of R’s reaction 

time being significantly lower than the other levels. Similarly to the result found from td analysis, 

while a change in Wt has a larger effect than PS on the operational cost (figure 22, left), the change 

in PS has a larger effect than Wt on the total system performance (figure 22, right). This result points 

to the conclusion that as the percentage of VT out of VI is larger, Wt is a more influential factor as 

compared to PS. Thus, Wt is more influential on the best operational level map. 

Figures 23 and 24 present Wt’s analysis for systems of ‘Type 2’. 

 

Figure 23: ‘Type 2’ results for analysis of best operational level maps for different Wt and Ps. Columns are for 

different Wt and rows for different Ps. Each map is represented in the sensitivity space where x axis is d’r and y 

axis is d’h 

 

Correspondingly to ‘Type 1’ results, as Wt increases R level becomes more dominant. 

Wt Wt 
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Figure 24: ‘Type 2’ analysis of the effect of Wt and Ps on VT (left graph) and VI (right graph)  

 

 

These findings match ‘Type 1’ systems’ results. Thus, Wt’s effect is independent of the 

system’s type. 

 

6.2 Action Cost Analysis 

The cost of action, Vc, composed of the number of ‘false alarms’ and ‘hits’ outcomes (Wa) 

multiplied by the operation cost weight, Wc, which is the cost of one action implementation (q.v. 

chapter 3.4 equation 8).  

 

6.2.1 Wa analysis 

The analysis focused on the effects each of the parameters had on Wa: PS, d’r and d’h.  ‘Type 1’ 

analysis is presented in figure 25. The following graphs illustrate the effect of target probability and 

the human and robot sensitivities, for each of the operational levels.  Each surface represents a 

different target probability.  The x and y axes represent the human and robot sensitivities, 

respectively, and the z axis represents the value of Wa. 
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Figure 25: The effect of different sensitivities and target probabilities on Wa for each operational level of ‘Type 

1’ systems 

 

 

For all model’s operational levels, increase of d’r, d’h and PS leads to an increase in Wa. In 

addition, for low target probability (PS = 0.1), changes of the sensitivities have less influence. These 

results are derived from the fact that Wa is the number of ‘hits’ and ‘false alarms’ outcomes; better 

human sensitivity, robot sensitivity and target probability increase the number of ‘hits’, therefore, 

increasing Wa.  
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Figure 26 presents Wa’s analysis for ‘Type 2’ systems. 

 

Figure 26: The effect of different sensitivities and target probabilities on Wa for each operational level of ‘Type 

2’ systems 

 

Results of ‘Type 2’ are opposite to these of ‘Type 1’. For all model’s operational levels, increase 

of d’r, d’h and Ps leads to a decrease in Wa. In addition, in ‘Type 2’ systems, for high target 

probability (PS = 0.9) changes of the sensitivities have less influence. These results demonstrate the 

difference between the two types. Systems of ‘Type 1’ are geared towards minimizing false alarms. 

Thus, for low system’s sensitivity (robot and human), in order to keep the false alarm ratio low the 

hit ratio will be low as well. As the system’s sensitivity increases, the system will be able to 

increase the hit ratio without affecting the false alarm ratio. On the other hand, ‘Type 2’ systems are 

geared towards detecting a target when one presented. For this type, low system’s sensitivity leads 

to high ratio of false alarms. As the system’s sensitivity increases, false alarm ratio decreases.   

6.2.2 Wc Analysis 

The operational cost as a function of time is a variable cost and depends, among other things, in 

the type of assignments the system has to perform, and the robotic system's complexity.  In order to 

examine the effect of Wc, this parameter received variable values, ranged from 2 to 18.  Figure 27 
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presents ‘Type 1’ analysis of the best operational level maps for different values of Wc and different 

target probabilities. 

 

 

Figure 27: ‘Type 1’ analysis of best operational level maps for different Wc and Ps. Columns are for different Wc 

and rows for different Ps. Each map is represented in the sensitivity space where x axis is d’r and y axis is d’h 

 

Results show that changes in Wc have a small influence on the best operational level maps for 

all target probabilities.  Similarly to the time cost analysis, for a further examination of Wc, its 

influence compared to the influence of PS on the operational costs and on the total objective 

function score (figure 28). 

 

Figure 28: Effect of Wc and Ps on VT (left graph) and VI (right graph) of ‘Type 1’ systems  

 

Increase of Wc has little influence on the operational costs (figure 28, left) and total system 

performance (figure 28, right)  for all model’s operational levels. However, combination of high Ps 

and high Wc dramatically increases the operational costs dramatically. Higher target probability 

Wc 

Wc Wc 
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increases Wa (number of ‘hits’ and ‘false alarms’) which is the factor that is multiplied by Wc, thus, 

combination of high Ps and high Wc has a great influence on the operational costs (figure 28, left).  

Figures 29 and 30 present Wc’s analysis for systems of ‘Type 2’. 

 

Figure 29: ‘Type 2’ analysis of best operational level maps for different Wc and Ps. Columns are for different Wc 

and rows for different Ps. Each map is represented in the sensitivity space where the x axis is d’r and the y axis is 

d’h 
 

These results are correspondingly with ‘Type 1’ systems’. Changes in Wc have only slight affect 

on the best operational level maps for all the target probabilities.   

 

 

Figure 30: Effect of Wc and Ps on VT (left graph) and VI (right graph) of ‘Type 2’ systems  

 

 

These findings match the results of ‘Type 1’. Thus, the influence of Wc is independent of the 

system’s type. 
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7. Sensitivity Analysis 

7.1 βs analysis 

The sensitivity analysis was performed for the three betas: βr, βh and βrh for a given situation, 

i.e., for a given d’r, d’h, Ps and outcomes weights (WH, WFA, WCR and WM). The logarithm of the 

analyzed beta ranged from -4 to 4 in order to cover wide range of criteria. In order to reduce the 

number of analysis and since we assume in this work that human perform better than robots in 

unstructured environments, only the cases where d’h ≥ d’r were analyzed. The analysis focused on 

three levels of target probability: Low (Ps = 0.1), Meduim (Ps = 0.5) and High (Ps = 0.9). The 

following results are for system of ‘Type 1’ where ∆1/∆2 = 5. Results of ‘Type 2’ systems are 

presented in Appendix VIII. It should be noted that throughout the entire sensitivity analysis the 

term ‘small deviations’ refers to ±1 deviations from the optimal value of the examined β.    

 

General description 

Figure 31 presents an example of the graphs which were used for all the analysis. Each β has its 

own graph where βr’s  analysis is on the left graph, βh’s analysis is on the middle graph  and βrh’s 

analysis is on the left. Each of the model’s operational levels is presented by a different line color 

where H blue, HR cyan, HOR green and R red. The x axis is the value of the β and y axis is the 

objective function score (VI). The optimal β and the highest possible score are marked with a black 

circle on the best level. In the example the best operational level in the optimal case is HOR. 

 

Figure 31: Example of β sensitivity graphs 
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The following results are common for all  analyes; changes in βr do not affect the H level (the 

blue line in the left graph), changes in βh do not affect the R level (the red line in the middle graph) 

and changes in βrh do not affect both the H and R levels (notice the red and blue lines in the right 

graph are straight).  

The aim of this analysis is to examine if small deviations from the optimal value of each β can 

casue a level shifting in order to maintain optimally. In this example (figure 31), an increase in βrh 

dramatically influences the objective function score and can cause a level shfiting from HOR to R 

level.  

 

Low Target Probability (Ps  = 0.1) 

In system of ‘Type 1’, for low Ps the R level is more dominant. For all the tested cases, when 

the R level was the best level, small deviations from the optimal βr did not force level shifting and 

the R level remained the best (Figure 32). 

 

Figure 32: βs analysis – low target probability and R is the best level 
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Figure 33 presents a case where the target probability is low and R is not the best level. 

 

 
Figure 33: βs analysis – low target probability and R is not the best level 

 

 

Changes in βr has a low influence on HR and HOR levels. On the other hand, changes in βh and 

βrh decrease the objective function score of these levels. The value of βh is more sensitive to 

deviations than the value of βrh , i.e., smaller deviations are required to enforce level shifting to R 

level from βh than from βrh value. These results point out that for this case the human’s decisions are 

more critical and have greater influence on the HR and HOR levels than the robot’s decisions. 

 

Medium Target Probability (Ps  = 0.5) 

The results for the case where Ps = 0.5 depends on the difference between d’h and d’r. If the 

difference is high (1 or more) then small deviations of βr or βrh can cause level shifting to H level 

(Figure 34). For low differences between d’h and d’r, changes in βr anf βrh affect the objective 

function score of the best operational level, however, small deviations from the optimal value of 

these βs does not force level shifting (figure 35).  
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Figure 34: βs analysis – medium target probability and high difference between d’h and d’r 
 

 

 

Figure 35: βs analysis – medium target probability and low difference between d’h and d’r 
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High Target Probability (Ps  = 0.9) 

Similarly to the findings for Ps = 0.5, the results depends on the difference between d’h and d’r. 

Figures 36 and 37  present the results for high and low differences respectively. Results show the 

increase from the optimal value of βrh is the most influential deviation (steepest gradient of the 

objective function score).  

 

Figure 36: βs analysis – high target probability and high difference between d’h and d’r 

 

 

Figure 37: βs analysis – mid target probability and low difference between d’h and d’r 
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7.2 Human’s and Robot’s sensitivities analysis 

The analysis was performed for both sensitivities: d’h and d’r. The following results are for 

system of ‘Type 1’ where ∆1/∆2=5. Results of ‘Type 2’ systems are presented in Appendix IX.  

General description 

Figure 38 presents an example of the graphs which were used for all the analysis. This example 

is of d’h analysis. The x axis is the value of the analyzed sensitivity (d’h in that example) and y axis 

is the objective function score (VI). The sensitivity paramter which is not analyzed (d’r in that 

example) is determined for six different values (one graph for each value). Each of the model’s 

operational levels is presented by a different line color where H blue, HR cyan, HOR green and R 

red. In the presented example the target probabilty set to 0.5. 

 

Figure 38: Example of d’h sensitivity graphs 

 

The top line in each graph represents the best collaboration level. Each intersection between the 

lines represents level shifting. The objective of this analysis is to point out critical values. A critical 

value is defined as a value that a small deviation from it can cause a level shifting. For example, in 

figure 38, when d’r = 2.5 then the critical value of d’h is 1.5 (marked with a black circle). These 

values are critical since we assume that in real systems the robot and especially the human 

sensitivities are random variables. 
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Figure 39 presents the robot’s sensitivity (d’r) analysis. 

 

 

 

 

Figure 39: Sensitivity analysis of d’r 

 

Results show that for low d’h (1 or less) changes in the robot sensitivity has similar effect on 

HR, HOR and R levels (the gradients of these levels are almost equal). However, as d’h increases, 

changes in d’r are more influential on the R level (this level has a steeper gradient). In Figure 39, 

there are three critical values (marked with black circles). 
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Figure 40 presents the human’s sensitivity (d’h) analysis. 

 

 

 

 

Figure 40: Sensitivity analysis of d’h 

 

 

For all the cases, d’h has a very similar effect on the performance of H, HR and HOR levels 

(almost identical gradients in all graphs). This finding leads to the conclusion that changes in d’h 

will not enforce level shifting between these levels. In addition, as human sensitivity rises, small 

changes in d’h are more influential on these levels’ performance. In all the graphs except one (where 

R level is the best for all d’h values) there are critical values. In all the critical values, an increase 

from the critical value leads one of the collaboration levels to become the best (HR or HOR) while a 

decrease leads the R level to become the best level. 
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8. Conclusions 

The numeric analysis exposed two different behavior types; ‘Type 1’, geared towards 

minimizing false alarms and ‘Type 2’ geared towards detecting targets. Results indicate that an 

increase in the human or robot sensitivities led to an increase in the objective function score for 

both types of systems, since higher sensitivity increased the discrimination ability between target 

and noise (no target object). Better sensitivity leads to more target detections and less false alarms 

and thus regardless of the system’s type or method of reward or penalty the objective function score 

increases. Furthermore, the manual level (H) was never the best level for the optimal cases; this 

may be the result of high operational costs and a relatively low detection rate. This implies that 

collaboration between human and robot in target recognition tasks, with similar conditions, will 

always improve system performance. It appears that the improvement in detection rate and hence 

rise in profits gained by this collaboration outweighs the rise in operational cost attributable to 

adding the robot to the system.  

Results showed opposite tendencies between the two types of systems found. In systems of 

'Type 1' as target probability increased R level was preferable in more cases, and as a result other 

collaboration levels were less preferable. In systems of 'Type 2' the trend was reversed: as target 

probability increased collaboration levels were preferable in more cases. 'Type 1' systems greatly 

value not committing errors; that is to say, they place high importance on results in situations where 

no target is present, or target probability is low. In turn, 'Type 2' systems greatly value results in 

which a target is present. Even though very different tendencies were discovered by the function 

analysis, several important similarities found between them should be pointed out: in both systems 

as the probability of the prominent object (non target in 'Type 1' and target in 'Type 2') increases, the 

R level will be preferable in more cases and, as the probability of the prominent object decreases, 

collaboration between human and robot is preferable. It can be assumed that this trend stems from 

the reciprocation between operational costs and recognition profits. 

Symmetry between the ‘hit’ weight, WH, and the ‘miss’ weight, WM and between the ‘correct 

rejection’ weight, WCR, and the ‘false alarm’ weight, WFA was revealed. The symmetry is expressed 

by the fact that different systems have identical best operational level maps. This finding lead to a 

further investigation which indicated that only the ratio ∆1/∆2, where ∆1 = WCR-WFA and ∆2 = WH-

WM, determines the classification of the system (‘Type 1’ or ‘Type 2’). The last finding served to 

generalize the results which were found for specific systems in this work to any system with the 

same ratio. Moreover, this finding can be assumed as a new property of the objective function score 

and assist in the understanding of further analysis.  
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The results from this work point out that the two types differ as a function of the target’s 

probability (PS) and that the system’s type depends on the ratio ∆1/∆2.  These results are related to 

both parts of the optimal β equation (q.v. chapter 5.2 equation 13). The a-priori probability (PS) is 

an unknown parameter which depends on the environment and cannot be controlled by the system’s 

designers. Thus, this parameter has not been considered as a parameter which defines the system’s 

type but it does affect the system’s performance. The ratio between the weights (∆1/∆2) depends on 

the system’s tasks and can be controlled by the system’s designers. Thus, this ratio defines the 

system’s type. 

The operational costs analysis reveals that changes in the time cost parameters have a high 

influence on the system performance. However, the action cost has a lower influence on the system 

performance. This result was obtained since the action cost depends upon the number of ‘hits’ and 

‘false alarms’.  Since the analysis was conducted for optimal thresholds, it is reasonable to assume 

that the system will have more ‘hits’.  Thus, more actions (hits or false alarms) will further lead to 

higher action cost but also to higher reward. This is the reason why the influence of the action cost 

is diminished.  From all the analyzed parameters, the human operator decision time was found to be 

the most influential parameter on the best operational level map. Improvement in the human 

decision time (i.e., shortening) leads to the collaboration levels HR and HOR to become preferable 

over R level. In addition, the operational costs analysis reveals that except for two parameters, ts 

and Wa, all the analyzed parameters had a similar effect on both types of systems. The system time, 

ts, and the number of actions, Wa, are depended upon the value of the target probability. Since ‘Type 

1’ and ‘Type 2’ have opposite tendencies as a function of the target probability, these parameters 

have a different effect on each type. 

Sensitivity analysis of βs revealed that in many cases, a small deviation from the optimal value 

required the system to switch to another operational level in order to stay at optimum performance. 

In addition, the sensitivity analysis of d’h and d’r indicates that while the influence of d’h depends on 

its value (i.e., deviations from high value has different effects on the system performance than 

deviations from low value of d’h), in which the influence of d’r is not depended upon its value.   

Results from this research can aid in designing new integrated systems and controlling various 

human-robot systems by mapping the influence of different parameters on the system state.  
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9. Discussion and future research 

This study aimed to investigate the performance of human-robot collaboration systems through 

a model developed by Bechar et al.(2006).   

The literature review suggested two main issues.  First, the limitations of autonomous robots, 

especially in dynamic environments, lead to the vast interest and speedy development in human – 

robot collaboration research.  Second, most human-robot collaboration studies use qualitative 

methods to examine human-robot system with the main goal to further advance the system 

development and to answer questions such as how the different parts should be appointed between 

human and robot.  

This study used a quantitative model, which has several significant advantages. Its results 

supply quantitative indexes for the system’s performance and it can support the initial part of 

designing the system as well as be used as an algorithm in an existing system. One drawback is that 

in order to model a collaboration system and to quantify the different parameters several variance 

assumptions must to be made, which diminishes from the generality of the model. 

The model was especially designed for target recognition tasks. However, with some 

modifications it can be customized for any task of integrated human-robot system which requires 

binary decision making. Future research may focus on modifications and implementations of 

Bechar’s model for different human-robot applications such as navigation.  

The numerical analysis was conducted with constant time parameters. In reality, these 

parameters, especially, the human’s time parameters are variables with a certain distribution. They 

depend on numerous factors such as: operator’s skills and fatigue, environmental conditions, image 

quality. Since these parameters affect the operational cost, the weight of the operational cost 

proportionately to the other objective function weights will determine the degree of their effect. In 

real life, each system has its own operational costs which depend on the system’s mission. In cases 

where the weight of the operational cost has a significant influence on the system’s objective 

function score and the time parameters have high variance, the results using time parameters as 

constants will not be adequate and the influence of these parameters should be investigated. Future 

research should focus on developing models that include variable time parameters and their 

analyses.  

This study presumes that robots do not function well in unstructured environments and 

therefore, collaboration is preferred. The analysis reveals that the changes in the human sensitivity 

and human decision time have great influence on the performance of the collaboration level. That is 

to say, amelioration of the operator's capabilities would be reflected in better sensitivity (i.e., better 

ability to distinguish between signal and noise) which would lead to better performance. Moreover, 

better sensitivity will lead to a faster decision making process and to a minimization of the time 

cost. Another direction for future research may focus on examining the influence of operator’s skills 

improvement on the overall system performance.  
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In order to apply Bechar’s model on a real system, some assumptions and estimations have to 

be made. It should be assumed that both target and non-target objects are normally distributed and 

have equal variance. This assumption will be acceptable for most environments. If the following 

assumption is not valid, the model can be applied but its objective function cannot be analyzed with 

the modified SDT method. In addition, the sensitivities of the system (d’h and d’r) and the a-priori 

probability (Ps) should be estimated. The accuracy and the effectiveness of the model are dependent 

on these estimations.  

Bechar’s model and its analysis resulting from this work can be used to control the operational 

level of a human-robot system in real time. In dynamic and unstructured environments, the value of 

the model’s parameters is not constant and can change very fast. This situation can lead to different 

operational levels becoming optimal in a relatively short time interval. That is, based on the model’s 

objective function, in order to maintain optimum, the system has to shift between its operational 

levels. In real systems, each shifting between the operational levels is associated with some costs, 

thus, the decision of level shifting cannot be based on the value of the objective function per se. The 

value of the objective function will be the main factor for that decision. However, we have to 

consider other aspects such as: Who decides on the level shifting, the robot or the human? What is 

the minimal time interval between level shifting? (the human’s fatigue and his/her learning curve 

should be considered). Future research should examine these questions and develop a transfer 

function (perhaps as a new part of the existing function or as a new function) which will consider 

the costs that are involved in level shifting.     
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Appendix I: PAPER: Performance Analysis of Human-Robot  

    Collaboration in Target Recognition Tasks 

Performance Analysis of Human-Robot Collaboration in Target Recognition Tasks 
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     Abstract — Application of autonomous robots in dynamic and unstructured environments still produces inadequate 

results. Integrating human perception skills with the autonomous systems’ accuracy and consistency can result in improved 

performance. This paper presents an in-depth performance evaluation of an integrated human-robot system for target 

recognition tasks based on quantitative analysis of an objective function developed in previous work. The system’s model is 

composed of four human-robot collaboration levels fitted for target recognition tasks. The objective function quantifies the 

influence of the robot, human, environment and task parameters through a weighted sum of performance measures, and 

enables it to determine the best level of collaboration based on these parameters. Numerical analysis of the objective function 

was performed for different objective function weights. In addition, sensitivity analysis of the influencing variables was 

performed on the optimum values. Results reveal two types of systems. The first type consists of systems geared towards 

minimizing false alarms. The second type consists of systems geared towards detecting a target when one is presented. In 

addition, it was found that the manual level is never the best collaboration level. 

 
Index Terms — collaboration levels, human-robot collaboration, objective function, performance analysis. 

I. INTRODUCTION 

Application of autonomous robots in real world, dynamic and unstructured environments still produces inadequate 

results [1]. Having an automated system handle all conceivable scenarios is extremely difficult [2], [3]. Inadequacies of 

sensor technologies further impair the capabilities of autonomous robotics [4]. Therefore, the promise of automatic and 

efficient autonomous operations has fallen short of expectations in unstructured and complex environments [5], [6]. 

Complexity is increased when dealing with natural objects such as in medical and agricultural environments due to the 

object’s high degree of variability in shape, texture, color, size, orientation and position. Consequently, the robotic 

systems become increasingly cumbersome, thereby creating a complicated system which is expensive to develop and 

operate [7] and not robust enough. 

Humans' acute perception capabilities enable them to deal with a flexible, vague, changing, and wide scope of 

definitions [8]. Moreover, humans have superior recognition capabilities and can easily adapt to changing 

environmental and object conditions [9]. However, a human operator is not consistent, tends to fatigue, and suffers from 

distraction [10]. By taking advantage of human perception skills and the accuracy and consistency of the autonomous 

system, the combined human-robotic system can be simplified, resulting in improved performance [11].  

The introduction of robots into everyday tasks such as surgery, therapy, service and entertainment domains requires 

development of methods that enable easy and effective communication between robots and humans [12]. Human-robot 

collaboration research has addressed the issue of how the human-robot association affects automation in aspects of data 

acquisition, data and information analysis, decision making, action selection, and action implementation  [11], in 

accordance with specific task or sub-task goals and parameters. Types and levels of automation are evaluated by 

examining their associated human performance consequences such as mental workload, situation awareness, 

complacency, and skill degradation  [3]. Sheridan  [13] divides automation into ten levels, from fully autonomous, with 

no human intervention to fully manual. Tsuji and Tanaka [14] investigated a tracking task where the human and the 

machine act simultaneously. Hughes and Lewis [15] developed different automation levels for a human-robot vehicle in 

an indoor exploration task. Graves and Czarnecki [16] described a scale of five human-robot interaction levels for a 

telerobotic behavior based system. 

Four human-robot collaboration levels for target recognition tasks in unstructured environments were developed in 

previous research [17]. An objective function was developed to determine the expected value of task performance in a 

target recognition task, given the parameters of the system, the task, and the environment [18]. To simplify the analysis 

of the function a modified signal detection theory was applied [19]. Numerical analysis of a simple form of the 

objective function was done [17]; the analysis excluded the miss and correct rejection parts. In this paper we 

complement previous analyses by including an in-depth analysis that evaluates the affects of rewards for correct 

rejection and penalties for missing targets.  
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II. METHODOLOGY 

a. Collaboration Levels 

Four basic Human-Robot collaboration levels for target recognition tasks were defined, tested and evaluated based on 

Sheridan’s scale of “action selection and automation of decision” [13]-  1) H: The human detects and marks the desired 

target manually. 2) HR: The human detects targets, aided by recommendations from the robot, i.e., objects are marked 

by a robot detection algorithm, the human inserts into the targets database, targets which marked by the robot and 

targets which the robot missed. 3) HOR: The human supervises the robot. Objects are identified by the robot’s detection 

algorithm and inserted into the targets database. The human removes false detections from the targets database and 

inserts targets missed by the robot. 4) R: Fully autonomous, the targets are marked automatically by the robot. 

b. System Objective Function 

The objective function is designed to enable determination of the expected value of task performance and the best 

collaboration level given the system parameters. The objective function [20] considers four major groups of parameters 

- human, robot, environment, and task. Each parameter influences the system’s situation and therefore the system’s 

performance. The objective function (VIs, equation 1, [21]) is composed of five parts; one for each of the four possible 

outcomes: correct detection (hit), false alarm, miss, correct rejection, and the fifth for the operational costs. The 

operational costs part includes the costs related to operational time and the action costs associated to the detected 

objects, whether they are hits or false alarms. 
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where N is the number of objects in the image, PS is the probability of an object becoming a target, VH is the gain of a 

single hit, pHr is the robot probability of a hit, pHrh is the human probability of confirming a robot hit, and pHh is the 

human probability of detecting a target which the robot did not detect, VM is the cost of a single miss, VFA is the damage 

of a single false alarm, pFAr is the robot false alarm probability, pFArh is the human probability of not correcting the robot 

false alarm, and pFAh is the human false alarm probability, VCR is the benefit of a single correct rejection, Vt is the cost 

of one time unit, and VC is the cost of one object recognition operation (hit or false alarm), tHrh is the human time 

required to confirm a robot hit, tHh is the human time required to hit a target which the robot miss, tFArh is the human 

time needed to correct a robot false alarm, tFAh is the human false alarm time, tMrh is the human time lost when a robot 

hit is missed, tMh is the human time invested when missing a target which the robot did not detect, tCRrh is the human 

correct rejection time of robot false alarm, tCRh is the human correct rejection time, and tr is the robot time. 

c. Signal Detection Theory 

To simplify the analysis of the objective function, a modified version of Signal Detection Theory (SDT) was applied 

[17]. The classic SDT for a single detector considers four performance measures: hit, false alarm, correct rejection and 

miss that can be computed by two variables; the sensitivity, d’, and the likelihood ratio criteria, β. In previous work [19] 

we modified SDT for two detectors, human and robot, where the performance of the first detector (robot) is determined 

by its sensitivity, d’r, and its criterion, βr. The second detector (human) uses its sensitivity, d’h, and two criteria; one for 

objects already marked by the robot, βrh, and one for objects unmarked by the robot, βh.   

Figure 1 represents a flowchart diagram of the target recognition process in an integrated human-robot system. The 

system is serial; each object is at first analyzed by the robot and then by the human operator. The robot analysis is 

exposed to the human operator. 
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Fig. 1. Flowchart of the target recognition process in an integrated human-robot system. 

III. NUMERICAL ANALYSIS 

A numerical analysis of the objective function was conducted on a PC with Matlab 7.1™. The analysis determined 

the best collaboration level and the objective function score for a given human sensitivity, robot sensitivity, target 

probability and different objective function weights [17]. All analyses were performed for the optimal likelihood ratios, 

βr, βh, and βrh. For every analyzed set of parameters the optimal likelihood ratios were determined in the range between 

the logarithm of -4 and the logarithm of 4, in order to cover the available hit and false alarm probabilities.  

As aforementioned, previous work [17] analyzed the objective function excluding the parts of the reward for correct 

rejection (VCR, tCRr, tCRh, tCRrh equal to zero) and the penalty for miss (VM, tMr, tMh, tMrh equal to zero). In this paper the 

numerical analysis was conducted on the complete objective function. Systems differ in the way they are designed and 

in their assignments, e.g., a mine finding system is designed to prioritize detecting targets (mines), which implies a high 

value for the hit weight (VH). In turn, medically oriented systems prioritize minimization of false alarms, which imply a 

high value for the false alarm weight (VFA). In the current analysis, different systems were simulated by giving different 

values for the objective function weights (VH, VFA, VCR, and VM). The current numerical analysis (Figure 2) focused on 

the influence of different human and robot sensitivity combinations (d'h and d'r) and different target probabilities (PS) on 

the best collaboration level and the objective function score of different systems. Each surface in Figure 2 represents 

one of the system’s possible collaboration levels. This figure illustrates the influence of the sensitivities on the objective 

function score (z axes) and the highest score for each sensitivities combination which is composed of the highest 

surface created from the surfaces intersections of the different collaboration levels (its perimeter is marked with a black 

solid line). Furthermore, each intersection in this area represents shifting between the collaboration levels to maintain 

optimum performance. 

 
Fig. 2. The influence of the human and robot sensitivities on the system performance for each collaboration level. 

a. Task Parameters 

Three ratio parameters between the objective function weights were set; the ratio between false alarm and hit 

weights, VFA2H, the ratio between correct rejection and miss weights, VCR2M, and the ratio between miss and hit, VM2H. 

The VFA2H and VCR2M values were set for 0.1, 1 and 10 in order to create a drastic difference between the objective 

function weights and to simulate different systems with different assignments. The ratio between miss and hit, VM2H, 

was set to 1. The value of hit weight, VH, was set to +50 and all the other weights were determined according to the 

ratios. For example, if VFA2H = 0.1 and VCR2M = 0.1 then the values of the other weights will be VFA = -5, VCR = +5, VM 

= -50.  
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The target probability, Ps, ranged from 0.1 to 0.9. The human sensitivity, d’h, and the robot sensitivity, d’r, ranged 

from 0.5 to 3. The operational cost for one object recognition operation was set to VC=-2 and the cost for one time unit 

was set to Vt=-2000 hr-1. The number of objects in each task was set to N= 1000. The values of the different parameters 

of the simulation were extracted from a preliminary experiment performed by Bechar et al. [18]. 

b. Best Collaboration Level 

The best collaboration level is defined as the level which under specific task parameters, achieves the highest 

objective function score (VIs). The analysis was conducted on a 2D graph that illustrates the best collaboration regions 

(Figure 3) where each collaboration level is represented by a different color. In the case presented, HR, HOR and R 

collaboration levels are the best collaboration level in different areas of the sensitivity space. This example indicates 

that for the same task the best collaboration level can change from one collaboration level to another. Different task, 

human, robot, or environment parameters will result in different collaboration maps. 

 
Fig. 3. Best collaboration level map. HR – Cyan, HOR – Yellow, R – Red.   

 

   The analysis revealed two main types of systems. The first type, denoted hereon as 'Type 1', consists of systems 

geared towards minimizing false alarms. This goal can be reached by setting proportionately higher rewards for correct 

rejections and/or higher penalties for false alarms. The second type denoted hereon as 'Type 2' consists of systems 

geared towards detecting targets when one is presented. This goal can be achieved by setting proportionately higher 

rewards for hits and/or higher penalties for misses.   

   For both system types, analysis of the collaboration map reveals symmetry between hits and false alarms ratio, VFA2H, 

and between correct rejection and miss ratio, VCR2M, i.e., the same collaboration map was generated when VFA2H =10, 

VCR2M =0.1 and VFA2H =0.1, VCR2M =10.   

Type 1: High priority to minimizing false alarms 

The analyses indicated that as the target probability, Ps, increases, the area of the R collaboration level, in the best 

collaboration level map, is reduced. Furthermore, results indicated that HR is the best collaboration level only when the 

human sensitivity, d’h, is higher than the robot sensitivity, d’r. It should be considered that when the target probability, 

Ps, is high, the HOR collaboration level is preferable in most of the sensitivity space. However, when robot sensitivity 

is higher than human sensitivity the best collaboration is R. The H collaboration level (human performs solely) was 

never the best collaboration level (Figure 4). 

 
Fig 4. Example of ‘Type 1’ systems collaboration map where VFA2H = 10, VCR2M = 10. HR – Cyan, HOR - Yellow and R – Red. 

Type 2: High priority to target detection 

As opposed to 'Type 1' systems, in 'Type 2' systems, an increase in the target probability, PS, increases the area of the 
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R collaboration level in the best collaboration level map. Moreover, for high and intermediate target probabilities, R 

was found to be the best collaboration level when the sensitivity of the robot is higher than that of the human. HR was 

found to be the best collaboration level only when the target probability was low, and the human sensitivity was higher 

than the robot sensitivity. For very low target probability (Ps=0.1), the HR collaboration level performed better than 

HOR, although as target probability increased HOR performed better than HR (Figure 5). Similar to the findings in 

'Type 1' systems, the 'Type 2' systems’ manual mode (H) was never the best collaboration level. 

 
Fig.5. Example of ‘Type 2’ systems collaboration map where VFA2H = 1, VCR2M = 0.1. HR – Cyan, HOR - Yellow and R – Red. 

c. Objective function score 

The objective function score reflects system profit. The analysis investigated the influence of the system and the 

tasks’ parameters on the objective function score where the system operates optimally, i.e., when the system uses the 

optimal likelihood ratios and the best collaboration level. While the symmetry which was found in the best 

collaboration level analysis revealed identical collaboration maps, the objective function score maps were not found to 

be equal. Similarly to the collaboration level analysis, the objective function score was analyzed in the human and robot 

sensitivity space for different target probabilities (Figure 6). 
 

 
Fig.6. Objective function score, the isobar lines represent equal value score. 

 

For both types, the symmetry discovered in the best collaboration analysis revealed that different systems have 

identical best collaboration maps. However, while there is an overlapping in the best collaboration level maps of the 

systems, their objective function score is different. The difference is derived from the way these systems achieve their 

goal - minimizing false alarms for ‘Type 1’ and detecting targets for ‘Type 2’. 

 

Type 1 

While some of the systems achieve the goal of minimizing false alarms, by giving high penalty for false alarms, other 

systems achieve it by giving high reward for correct rejections. The value of the objective function score of 'Type 1' 

systems depends on both target probability and on the ratio between the reward for correct rejection and the penalty for 

false alarm.  

When the goal is achieved by giving high reward for correct rejection the objective function score decreases as the 

target probability increases (Figure 7).  
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Fig.7. The system’s goal is achieved by giving high reward for correct rejection 

 

The value of each of the objective function parts (VH, VFA, VM, VCR) depends on the probability for this part and the 

weight of the part. Since the analyses were performed for optimal βs, it is reasonable to assume that the probability of 

correct rejections would be higher than the probability of false alarms (these probabilities are complementary). 

Consequently, when the goal is achieved by giving high penalty for false alarms the tendency of the objective function 

can be changed depending on the ratio between VFA and VCR; for low ratios (when VFA is not much larger than VCR), the 

objective function score decreases as the target probability increases. For higher ratios, changes in the target probability 

hardly affect the objective function score (Figure 8) probably due to the tradeoff between the value of the probability 

and the value of the weight. When the ratio is high enough, the objective function score increases as the target 

probability increases.  

 
Fig.8. The system’s goal is achieved by giving high penalty for false alarm 

 

Type 2 

While some of the systems achieve the goal of detecting targets, by giving high reward for hit, other systems achieve 

it by giving high penalty for miss. The tendency of the objective function score depends on target probability and the 

ratio between hit and miss weights.  

When the goal is achieved by giving high reward for hit the objective function score increases as the target 

probability increases. When the goal is achieved by giving high penalty for misses, similarly to ‘Type 1’, the tendency 

of the objective function can be changed depending on the ratio between VM and VH; for low ratios the objective 

function will increase as the target probability increases, for higher ratios changes in target probability will be reflected 

in small changes in the objective function score. When the ratio is high enough the objective function score decrease as 

the target probability increases. 

For all the systems analyzed (Type 1 and 2), an increase in human or robot sensitivity leads to an increase in the 

objective function score. 
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IV. SENSITIVITY ANALYSIS 

Sensitivity analysis was performed for βr, βh and βrh for a given system, task and environment parameters. Figure 9 

shows the influence of each β on the objective function score in all collaboration levels. In this example the analysis 

was performed for 'Type 2' systems where the ratios VFA2H and VCR2M  was set to 0.1, the robot sensitivity was set to 1, 

the human sensitivity was set to 2.5, and the target probability was set to 0.1. Deviations in βr were found to influence 

R, HOR and HR collaboration levels. Deviations in βh were found to affect the HO, HR and HOR collaboration levels. 

Deviations in βrh were found to influence only HOR and HR collaboration levels. For example, small decrease in βrh 

will cause level shifting from HR to HOR to maintain optimal performance (Figure 9). 

 
Fig.9. Influence of βr, βh and βrh on each of the collaboration levels. Each line represents a collaboration level: R- Red, HR – Cyan, HOR- Green, H – 

Blue. The optimal β (X axis) and the highest score (Y axis) are marked with a black circle. The highest line represents the best collaboration level. In 

this example, for optimal β’s, the best collaboration level is HR.  

 

Figure 10 presents another example in which the best collaboration level is R, hence, only deviations in βr can cause 

level shifting to maintain optimal performance.   

 
Fig.10. Small deviations in βr drastically affect the objective function score and cause level shifting from R to H to maintain optimal performance. 

V. SUMMARY AND CONCLUSIONS 

The numeric analysis exposed two different behavior types; ‘Type 1’, geared towards minimizing false alarms and 

‘Type 2’ geared towards detecting targets. Results indicate that an increase in the human or robot sensitivities led to an 

increase in the objective function score for both types, since higher sensitivity increase the discrimination ability 

between target and noise (no target object). Better sensitivity leads to more target detections and less false alarms and 

thus regardless of the system’s type or method of reward or penalty the objective function score increases. Furthermore, 

the manual collaboration mode (H) was never the best collaboration level; this may be the result of high operational 

costs and a relatively low detection rate. This implies that collaboration between human and robot in target recognition 

tasks will always improve system performance. It appears that the improvement in detection rate and hence rise in 

profits gained by this collaboration outweighs the rise in operational cost attributable to adding the robot to the system.  

Results showed opposite tendencies between the two types of systems found. In systems of 'Type 1' as target 

probability increased R level was preferable in more cases, and as a result collaboration levels were less preferable. In 

systems of 'Type 2' the trend was reversed: as target probability increased collaboration levels were preferable in more 

cases. 'Type 1' systems greatly value not committing errors; that is to say, they place high importance on results in 

situations where no target is present, or target probability is low. In turn, 'Type 2' systems greatly value results in which 
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a target is present. Even though very different tendencies were discovered by the function analysis, several important 

similarities found between them should be pointed out: in both systems as the probability of the prominent object (non 

target in 'Type 1' and target in 'Type 2') increases, the R collaboration level will be preferable in more cases and, as the 

probability of the prominent object decreases, collaboration between human and robot is preferable. It can be assumed 

that this trend stems from the reciprocation between operational costs and recognition profits. 

In addition, sensitivity analysis of the βs indicated that while R collaboration level was only found to be affected by 

the position of βr, the two collaboration levels, HOR and HR, were found to be affected by all the three betas. This 

analysis revealed that in many cases, a small deviation from the optimal value required the system to switch to another 

collaboration level in order to stay at optimum performance. 

Results from this paper can aid in designing new integrated systems and controlling various human-robot systems by 

mapping the influence of different parameters on the system state. The findings will serve as a foundation for further 

analysis, which will focus on developing a dynamic model for shifting between collaboration levels based on the 

system’s situation, as shown by the objective function. 
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Appendix II: Expression of Z as a function of β and d’ (Bechar, 

2006) 

 

The standard deviation unit, Z, can be expressed by the likelihood ratio, β, between the signal and 

noise density functions in the cutoff point x, and the distance between the means of the signal and 

noise distributions, which is the sensitivity parameter, d’. 
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Appendix III: Matlab™ code 

 

Creation of initial objective function database 

 
% This program create the Objective function database  
% for all the following combinations : 
% 3. Ps - [0.1,0.5,0.9]         4. d'h and d'r [-0.5:-0.5:3] 
% 4. All 3 ln(betas) range is [-4:0.2:4] 
% All time parameters are CONSTANTS. 
% For each itteration the program saves a file with all the information.  
  
  
clear  
clc 
close all 
  
  
tic 
N=1000; % # of objects 
Nstr=num2str(N); 
             VC=2:4:18;% the cost of one object recognition operation (Hit or False) 
%                 
             for i=1:length(VC) 
                  Vcstr=num2str(VC(i)); 
% Loop 1 : Vfa/Vh aspect ratio  
VFA2H=[10]; 
 for VAR=1:length(VFA2H) 
    VARstr=num2str(VFA2H(VAR)); 
     
% Loop 2 : Probability for object to be target  
    Psvector=[0.1,0.5,0.9];  
    for Pscount=1:length(Psvector) 
        Ps=Psvector(Pscount); 
        Psstr=num2str(Ps); 
     
% Loop 3 : The range of d' for human (second detector)  
% the operator sensativity 
  
        dhvector=[-0.5:-0.5:-3]; 
        for dh=1:length(dhvector) 
            dtagH=dhvector(dh);   
            Dh=num2str(-dtagH); 
% Loop 4 : The range of d' for robot  
% the robot sensativity           
            drvector=[-0.5:-0.5:-3]; 
            for dr=1:length(drvector) 
                dtagR=drvector(dr);  
                Dr=num2str(-dtagR); 
  % The constants 
         %    for Vfa=10:10:40 
                VM=10; % the gain from hit 
                VH=20; %-VM*VFA2H(VAR); % the panelty for miss 
                VCR=10; % the gain from correct rejection 
                VHstr=num2str(VH); 
                VMstr=num2str(VM); 
                VFA=-VFA2H(VAR)*VH;%VM*VFA2H(VAR); % the panelty for false alarm 
                VFAstr=num2str(VFA); 
                VCRstr=num2str(VCR); 
                Vc=-VC(i);% the cost of one object recognition operation (Hit or False) 
               % VCstr = num2str(-Vc); 
%                 Vt=-VT(i)/3600; % the cost of one time unit 
               Vt=-2000/3600; 
               Vtstr=num2str(-Vt*3600); 
                 
                tr=0.01; % The robot time.  sec/object on average 
                tmotor=2;    %(Tm - motoric time = 2)          
   
                 Td =5;%Td - desicion time ; 
             
            Br=0; 
        % Loop 5 : beta r 
                for lnbetar=-4:0.2:4 
                    Br=Br+1; 
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                    Bh=0; 
        % Loop 6 : beta h 
                    for lnbetah=-4:0.2:4 
                        Bh=Bh+1; 
                        Brh=0; 
        % Loop 7 : beta rh 
                        for lnbetarh=-4:0.2:4 
                            Brh=Brh+1; 
     
                       
                  tHh(Brh,Bh,Br)=Td; 
                  tFAh(Brh,Bh,Br)=Td; 
                  tMh(Brh,Bh,Br)=Td; 
                  tCRh(Brh,Bh,Br)=Td; 
                   
                  tHrh(Brh,Bh,Br)=Td; 
                  tFArh(Brh,Bh,Br)=Td;    
                  tMrh(Brh,Bh,Br)=Td; 
                  tCRrh(Brh,Bh,Br)=Td; 
                   
   % the probabilities of the robot  
                            Zsr(Brh,Bh,Br)=(-2.*lnbetar+dtagR.^2)./(2.*dtagR); % R's Z of signal 
                            Znr(Brh,Bh,Br)=(-2.*lnbetar-dtagR.^2)./(2.*dtagR); % R's Z of noise 
                            phr(Brh,Bh,Br)=1-normcdf(Zsr(Brh,Bh,Br)); % R's probability for HIT  
                            pfar(Brh,Bh,Br)=1-normcdf(Znr(Brh,Bh,Br)); % R's probability for FALSE  
                           
  
    %the probabilities of the HO (second detector) for object that the 
    %robot didn't detect (The desicion is based on Bh) 
                            ZsH(Brh,Bh,Br)=(-2.*lnbetah+dtagH.^2)./(2.*dtagH);  % HO's Z for signal 
                            ZnH(Brh,Bh,Br)=(-2.*lnbetah-dtagH.^2)./(2.*dtagH);  % HO's Z for noise 
                            phh(Brh,Bh,Br)=1-normcdf(ZsH(Brh,Bh,Br)); % HO's probability for HIT  
                            pfah(Brh,Bh,Br)=1-normcdf(ZnH(Brh,Bh,Br)); % HO's probability for FALSE  
                             
 %the probabilities of the HO (second detector) for object that the robot 
 %already detected (The desicion is based on Brh) 
                            ZsRH(Brh,Bh,Br)=(-2.*lnbetarh+dtagH.^2)./(2.*dtagH); % HO-R's Z for 
signal 
                            ZnRH(Brh,Bh,Br)=(-2.*lnbetarh-dtagH.^2)./(2.*dtagH); % HO-R's Z for 
noise 
                            phrh(Brh,Bh,Br)=1-normcdf(ZsRH(Brh,Bh,Br)); % HO-R's probability for HIT  
                            pfarh(Brh,Bh,Br)=1-normcdf(ZnRH(Brh,Bh,Br)); % HO-R's probability for 
FALSE  
                             
   % HO-R and HO-Rr probabilities and score  
                         % probability for HIT    
                            PHs(Brh,Bh,Br)=phr(Brh,Bh,Br).*phrh(Brh,Bh,Br)+(1-
phr(Brh,Bh,Br)).*phh(Brh,Bh,Br);  
                         % gain from HIT    
                            VHs(Brh,Bh,Br)=N.*Ps.*PHs(Brh,Bh,Br).*VH;  
                         % System probability for MISS    
                            PMs(Brh,Bh,Br)=1-PHs(Brh,Bh,Br);  
                         %  penalty from MISS    
                            VMs(Brh,Bh,Br)=N.*Ps.*PMs(Brh,Bh,Br).*VM;  
                        %  probability for false alarm      
                            PFAs(Brh,Bh,Br)=pfar(Brh,Bh,Br).*pfarh(Brh,Bh,Br)+(1-
pfar(Brh,Bh,Br)).*pfah(Brh,Bh,Br);  
                         %  penalty from false alarm      
                            VFAs(Brh,Bh,Br)=N.*(1-Ps).*PFAs(Brh,Bh,Br).*VFA; 
                         %  probability for correct rejection      
                            PCRs(Brh,Bh,Br)=1-PFAs(Brh,Bh,Br); 
                         %  gain from correct rejection      
                            VCRs(Brh,Bh,Br)=N.*(1-Ps).*PCRs(Brh,Bh,Br).*VCR; 
                             
     % calculate time parameters                        
  
    % HO-Rr CL 
                            tsHORr(Brh,Bh,Br)= 
N.*Ps.*phr(Brh,Bh,Br).*phrh(Brh,Bh,Br).*(tHrh(Brh,Bh,Br)+tmotor)+N.*Ps.*(1-
phr(Brh,Bh,Br)).*phh(Brh,Bh,Br).*(tHh(Brh,Bh,Br)+tmotor)+N.*(1-
Ps).*pfar(Brh,Bh,Br).*pfarh(Brh,Bh,Br).*(tFArh(Brh,Bh,Br)+tmotor)+N.*(1-Ps).*(1-
pfar(Brh,Bh,Br)).*pfah(Brh,Bh,Br).*(tFAh(Brh,Bh,Br)+tmotor)... 
                                              +N.*Ps.*phr(Brh,Bh,Br).*(1-
phrh(Brh,Bh,Br)).*tMrh(Brh,Bh,Br)+N.*Ps.*(1-phr(Brh,Bh,Br)).*(1-
phh(Brh,Bh,Br)).*tMh(Brh,Bh,Br)+N.*(1-Ps).*pfar(Brh,Bh,Br).*(1-
pfarh(Brh,Bh,Br)).*tCRrh(Brh,Bh,Br)+N.*(1-Ps).*(1-pfar(Brh,Bh,Br)).*(1-
pfah(Brh,Bh,Br)).*tCRh(Brh,Bh,Br)+tr; 
   % HO-R CL 
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                            tsHOR(Brh,Bh,Br)= 
N.*Ps.*phr(Brh,Bh,Br).*phrh(Brh,Bh,Br).*tHrh(Brh,Bh,Br)+N.*Ps.*(1-
phr(Brh,Bh,Br)).*phh(Brh,Bh,Br).*(tHh(Brh,Bh,Br)+tmotor)+N.*(1-
Ps).*pfar(Brh,Bh,Br).*pfarh(Brh,Bh,Br).*tFArh(Brh,Bh,Br)+N.*(1-Ps).*(1-
pfar(Brh,Bh,Br)).*pfah(Brh,Bh,Br).*(tFAh(Brh,Bh,Br)+tmotor)... 
                                             +N.*Ps.*phr(Brh,Bh,Br).*(1-
phrh(Brh,Bh,Br)).*(tMrh(Brh,Bh,Br)+tmotor)+N.*Ps.*(1-phr(Brh,Bh,Br)).*(1-
phh(Brh,Bh,Br)).*tMh(Brh,Bh,Br)+N.*(1-Ps).*pfar(Brh,Bh,Br).*(1-
pfarh(Brh,Bh,Br)).*(tCRrh(Brh,Bh,Br)+tmotor)+N.*(1-Ps).*(1-pfar(Brh,Bh,Br)).*(1-
pfah(Brh,Bh,Br)).*tCRh(Brh,Bh,Br)+tr; 
         
                            VcHORr(Brh,Bh,Br) = (N.*Ps.*phr(Brh,Bh,Br).*phrh(Brh,Bh,Br)+N.*Ps.*(1-
phr(Brh,Bh,Br)).*phh(Brh,Bh,Br)+N.*(1-Ps).*pfar(Brh,Bh,Br).*pfarh(Brh,Bh,Br)+N.*(1-Ps).*(1-
pfar(Brh,Bh,Br)).*pfah(Brh,Bh,Br)).*Vc; 
                             
                            VcHOR(Brh,Bh,Br) = (N.*Ps.*phr(Brh,Bh,Br).*phrh(Brh,Bh,Br)+N.*Ps.*(1-
phr(Brh,Bh,Br)).*phh(Brh,Bh,Br)+N.*(1-Ps).*pfar(Brh,Bh,Br).*pfarh(Brh,Bh,Br)+N.*(1-Ps).*(1-
pfar(Brh,Bh,Br)).*pfah(Brh,Bh,Br)).*Vc; 
    % Operational cost (the only different between the levels is the time parameter (first 
argument))  
  
                            VTsHORr(Brh,Bh,Br)=tsHORr(Brh,Bh,Br).*Vt+ VcHORr(Brh,Bh,Br); 
                            
                            VTsHOR(Brh,Bh,Br)=tsHOR(Brh,Bh,Br).*Vt+VcHOR(Brh,Bh,Br); 
     
    % the objective function for HO-R and HO-Rr   
                            
VIsHORr(Brh,Bh,Br)=VHs(Brh,Bh,Br)+VMs(Brh,Bh,Br)+VFAs(Brh,Bh,Br)+VCRs(Brh,Bh,Br)+VTsHORr(Brh,Bh,Br); 
                             
                            
VIsHOR(Brh,Bh,Br)=VHs(Brh,Bh,Br)+VMs(Brh,Bh,Br)+VFAs(Brh,Bh,Br)+VCRs(Brh,Bh,Br)+VTsHOR(Brh,Bh,Br); 
     
    % calculating the R level 
                            PHsR(Brh,Bh,Br)=phr(Brh,Bh,Br); 
                            VHsR(Brh,Bh,Br)=N.*Ps.*PHsR(Brh,Bh,Br).*VH; 
                            PFAsR(Brh,Bh,Br)=pfar(Brh,Bh,Br); 
                            VFAsR(Brh,Bh,Br)=N.*(1-Ps).*PFAsR(Brh,Bh,Br).*VFA; 
                            PMsR(Brh,Bh,Br)=1-PHsR(Brh,Bh,Br); 
                            VMsR(Brh,Bh,Br) = N.*Ps.*(PMsR(Brh,Bh,Br)).*VM; 
                            PCRsR(Brh,Bh,Br) = 1-PFAsR(Brh,Bh,Br); 
                            VCRsR(Brh,Bh,Br) = N.*(1-Ps).*PCRsR(Brh,Bh,Br).*VCR; 
   % Operational cost 
                            tsR(Brh,Bh,Br)=tr; 
                            VcR(Brh,Bh,Br) = (N.*Ps.*PHsR(Brh,Bh,Br)+N.*(1-
Ps).*PFAsR(Brh,Bh,Br)).*Vc; 
                            VTsR(Brh,Bh,Br)=tsR(Brh,Bh,Br).*Vt+VcR(Brh,Bh,Br); 
         
    % The objective function for R 
                            
VIsR(Brh,Bh,Br)=VHsR(Brh,Bh,Br)+VMsR(Brh,Bh,Br)+VFAsR(Brh,Bh,Br)+VCRsR(Brh,Bh,Br)+VTsR(Brh,Bh,Br); 
    
    % calculating the HO level 
                             PHsHO(Brh,Bh,Br)=phh(Brh,Bh,Br); 
                             VHsHO(Brh,Bh,Br)=N.*Ps.*PHsHO(Brh,Bh,Br).*VH; 
                             PFAsHO(Brh,Bh,Br)=pfah(Brh,Bh,Br); 
                             VFAsHO(Brh,Bh,Br)=N.*(1-Ps).*PFAsHO(Brh,Bh,Br).*VFA; 
                             PMsHO(Brh,Bh,Br)=1-PHsHO(Brh,Bh,Br); 
                             VMsHO(Brh,Bh,Br) = N.*Ps.*PMsHO(Brh,Bh,Br).*VM; 
                             PCRsHO(Brh,Bh,Br) = 1-PFAsHO(Brh,Bh,Br); 
                             VCRsHO(Brh,Bh,Br) = N.*(1-Ps).*PCRsHO(Brh,Bh,Br).*VCR; 
     % Operational cost                          
                             tsHO(Brh,Bh,Br)= 
N.*Ps.*PHsHO(Brh,Bh,Br).*(tHh(Brh,Bh,Br)+tmotor)+N.*(1-
Ps).*PFAsHO(Brh,Bh,Br).*(tFAh(Brh,Bh,Br)+tmotor)... 
                                             +N.*Ps.*(1-PHsHO(Brh,Bh,Br)).*tMh(Brh,Bh,Br)+N.*(1-
Ps).*(1-pfah(Brh,Bh,Br)).*tCRh(Brh,Bh,Br);                   
                             VcHO(Brh,Bh,Br)= (N.*Ps.*phh(Brh,Bh,Br)+N.*(1-
Ps).*pfah(Brh,Bh,Br)).*Vc; 
                                          
                             VTsHO(Brh,Bh,Br)=tsHO(Brh,Bh,Br).*Vt+VcHO(Brh,Bh,Br); 
         
     % The objective function for HO 
                             
VIsHO(Brh,Bh,Br)=VHsHO(Brh,Bh,Br)+VMsHO(Brh,Bh,Br)+VFAsHO(Brh,Bh,Br)+VCRsHO(Brh,Bh,Br)+VTsHO(Brh,Bh,
Br); 
    
                              
                        end % beta r (loop 7) (Br) 
                    end % beta h (loop 6) (Bh) 
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                end % beta rh (loop 5) (Brh) 
           
                
fn=['OF_dh_',Dh,'_dr_',Dr,'_Ratio_',VARstr,'_Vc_',Vcstr,'_Vt_',Vtstr,'_Ps_',Psstr,'.mat'] 
                
  
                eval(['save e:\work\db\vc\hit20\',fn]) % allvariables]) 
  
              end 
             end    %dr (loop 4) 
        end    % dh  (loop 3) 
        Pscount 
    end    % Pscount  (loop 2) 
%     VAR 
 end   % VAR  (loop 1) 

Creation of database for optimal betas 

 
% Based on the data created in "Database.m" this program finds the optimal Beta for a given: 
%  1. dr'     2.dh'     3.Ps    4.Ratio 
% and based on the optimal Beta calculate the parameters  for all the collaboration levels 
  
clear 
clc 
close all 
  
tic 
  
  
 dhvector=[-0.5:-0.5:-3]; 
 drvector=[-0.5:-0.5:-3]; 
 Ps=[0.1,0.5,0.9]     %probability for object to be target     
  
  
     
   VFA2H=10; %[0.2,0.3333,3,5];%VFA/VH aspect ratio range 
    for VAR=1:length(VFA2H) 
        VARstr=num2str(VFA2H(VAR)); 
    
     % The constants 
                VH=50; % the gain from hit 
                VM=10; % the panelty for miss 
                VCR=10; % the gain from correct rejection 
                VHstr=num2str(VH); 
                VMstr=num2str(VM); 
                VFA=-VFA2H(VAR)*VH; % the panelty for false alarm 
                VFAstr=num2str(VFA); 
                VCRstr=num2str(VCR); 
                Vc=-2; % the cost of one object recognition operation (Hit or False) 
                VCstr=num2str(-Vc); 
                Vt=-2000/3600; % the cost of one time unit 
                Vtstr=num2str(-Vt*3600); 
                tr=0.01; % The robot time.  sec/object on average 
                Td = 5; 
                td = num2str(Td); 
        
        for P=1:length(Ps) 
            Psstr=num2str(Ps(P)); 
     
            for dh=1:length(dhvector)       % the range of d' for human (second detector) 
                dtag=dhvector(dh);  
                Dh=num2str(-dtag); 
     
                for dr=1:length(drvector)      % the range of d' for robot (first detector) 
                    dtagR=drvector(dr) ; 
                    Dr=num2str(-dtagR); 
                    %load the data was created with Database.m  
                     
fn=['OF_dh_',Dh,'_dr_',Dr,'_Ratio_',VARstr,'_Vc_',VCstr,'_Vt_',Vtstr,'_Ps_',Psstr,'_td_',td,'.mat'] 
                    var =[' VIsHO PHsHO tsHO  VcHO VcR VcHOR VcHORr VTsHO PFAsHO VIsR PHsR tsR VTsR 
PFAsR VIsHOR PHs tsHOR VTsHOR PFAs VIsHORr tsHORr VTsHORr']; 
                    eval(['load e:\work\db\td\hit20\',fn var])  
                             
         % Calculate the parmeters with optimal Beta for the HO level *** 
                                     
                 % Find index of optimal Beta    
                    HOVIs(dr,dh,P)=max(VIsHO(:)); % find the max value of VIsHO  
                    [x y]=find(VIsHO==HOVIs(dr,dh,P)); % find the indexes of Max(VIsHO)  
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                    brhs_VIsHO(dr,dh,P)=x(1); % X index 
                    brs_VIsHO(dr,dh,P)=ceil(y(1)./41); % Z index 
                    bhs_VIsHO(dr,dh,P)=y(1)-41*(brs_VIsHO(dr,dh,P)-1); % Y index 
                 
                  % create the HO optimal data metrix based on  optimal Beta 
                    HOPHs(dr,dh,P)=PHsHO(brhs_VIsHO(dr,dh,P),bhs_VIsHO(dr,dh,P),brs_VIsHO(dr,dh,P));  
                    
HOPfa(dr,dh,P)=PFAsHO(brhs_VIsHO(dr,dh,P),bhs_VIsHO(dr,dh,P),brs_VIsHO(dr,dh,P));      
                    
HOVts(dr,dh,P)=tsHO(brhs_VIsHO(dr,dh,P),bhs_VIsHO(dr,dh,P),brs_VIsHO(dr,dh,P)).*Vt;   
                    HOVcs(dr,dh,P)=VcHO(brhs_VIsHO(dr,dh,P),bhs_VIsHO(dr,dh,P),brs_VIsHO(dr,dh,P)); 
                    HOVTs(dr,dh,P)=VTsHO(brhs_VIsHO(dr,dh,P),bhs_VIsHO(dr,dh,P),brs_VIsHO(dr,dh,P));      
                       
                     
          % Calculate the parmeters with optimal Beta for the R level    
                 % Find index of optimal Beta 
                    RVIs(dr,dh,P)=max(VIsR(:)); 
                    [x y]=find(VIsR==RVIs(dr,dh,P)); 
                    brhs_VIsR(dr,dh,P)=x(1);% X index 
                    brs_VIsR(dr,dh,P)=ceil(y(1)./41); % Z index 
                    bhs_VIsR(dr,dh,P)=y(1)-41*(brs_VIsR(dr,dh,P)-1); % Y index 
                     
                % create the R data metrix based on  optimal Beta  
                    RPHs(dr,dh,P)=PHsR(brhs_VIsR(dr,dh,P),bhs_VIsR(dr,dh,P),brs_VIsR(dr,dh,P));         
                    RPfa(dr,dh,P)=PFAsR(brhs_VIsR(dr,dh,P),bhs_VIsR(dr,dh,P),brs_VIsR(dr,dh,P));      
                    RVts(dr,dh,P)=tsR(brhs_VIsR(dr,dh,P),bhs_VIsR(dr,dh,P),brs_VIsR(dr,dh,P)).*Vt; 
                    RVcs(dr,dh,P)=VcR(brhs_VIsR(dr,dh,P),bhs_VIsR(dr,dh,P),brs_VIsR(dr,dh,P)); 
                    RVTs(dr,dh,P)=VTsR(brhs_VIsR(dr,dh,P),bhs_VIsR(dr,dh,P),brs_VIsR(dr,dh,P)); 
                            
     
              % Calculate the parmeters with optimal Beta for the HO-R level    
                 % Find index of optimal Beta    
                    HORVIs(dr,dh,P)=max(VIsHOR(:)); 
                    [x y]=find(VIsHOR==HORVIs(dr,dh,P)); 
                    brhs_VIsHOR(dr,dh,P)=x(1); % X index 
                    brs_VIsHOR(dr,dh,P)=ceil(y(1)./41); % Z index 
                    bhs_VIsHOR(dr,dh,P)=y(1)-41*(brs_VIsHOR(dr,dh,P)-1);% Y index 
                     
                % create the HO-R data metrix based on  optimal Beta  
                    
HORPHs(dr,dh,P)=PHs(brhs_VIsHOR(dr,dh,P),bhs_VIsHOR(dr,dh,P),brs_VIsHOR(dr,dh,P));         
                    
HORPfa(dr,dh,P)=PFAs(brhs_VIsHOR(dr,dh,P),bhs_VIsHOR(dr,dh,P),brs_VIsHOR(dr,dh,P));                
                    
HORVts(dr,dh,P)=tsHOR(brhs_VIsHOR(dr,dh,P),bhs_VIsHOR(dr,dh,P),brs_VIsHOR(dr,dh,P)).*Vt; 
                    
HORVcs(dr,dh,P)=VcHOR(brhs_VIsHOR(dr,dh,P),bhs_VIsHOR(dr,dh,P),brs_VIsHOR(dr,dh,P)); 
                    
HORVTs(dr,dh,P)=VTsHOR(brhs_VIsHOR(dr,dh,P),bhs_VIsHOR(dr,dh,P),brs_VIsHOR(dr,dh,P)); 
  
                     
                % Calculate the parmeters with optimal Beta for the HO-Rr level    
                 % Find optimal Beta   
                    HORrVIs(dr,dh,P)=max((VIsHORr(:))); 
                    [x y]=find(VIsHORr==HORrVIs(dr,dh,P)); 
                    brhs_VIsHORr(dr,dh,P)=x(1); 
                    brs_VIsHORr(dr,dh,P)=ceil(y(1)./41); 
                    bhs_VIsHORr(dr,dh,P)=y(1)-41*(brs_VIsHORr(dr,dh,P)-1); 
             
                % create the HO-Rr data metrix based on  optimal Beta  
                    
HORrPHs(dr,dh,P)=PHs(brhs_VIsHORr(dr,dh,P),bhs_VIsHORr(dr,dh,P),brs_VIsHORr(dr,dh,P));            
                    
HORrPfa(dr,dh,P)=PFAs(brhs_VIsHORr(dr,dh,P),bhs_VIsHORr(dr,dh,P),brs_VIsHORr(dr,dh,P));      
                    
HORrVts(dr,dh,P)=tsHORr(brhs_VIsHORr(dr,dh,P),bhs_VIsHORr(dr,dh,P),brs_VIsHORr(dr,dh,P)).*Vt; 
                    
HORrVcs(dr,dh,P)=VcHORr(brhs_VIsHORr(dr,dh,P),bhs_VIsHORr(dr,dh,P),brs_VIsHORr(dr,dh,P)); 
                    
HORrVTs(dr,dh,P)=VTsHORr(brhs_VIsHORr(dr,dh,P),bhs_VIsHORr(dr,dh,P),brs_VIsHORr(dr,dh,P)); 
                                                
                 
                %find Max objective function  
                    Vi_Temp=[HOVIs(dr,dh,P),HORrVIs(dr,dh,P),HORVIs(dr,dh,P),RVIs(dr,dh,P)]; 
                    Vi_max(dr,dh,P)=max(Vi_Temp); 
                     
                %find best CL based on Max objective function  
                    Temp_CL=find(Vi_Temp==Vi_max(dr,dh,P)); 
                    BestCL(dr,dh,P)=Temp_CL(1); 
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                    PH_Temp=[HOPHs(dr,dh,P),HORrPHs(dr,dh,P),HORPHs(dr,dh,P),RPHs(dr,dh,P)]; 
                    PFA_Temp=[HOPfa(dr,dh,P),HORrPfa(dr,dh,P),HORPfa(dr,dh,P),RPfa(dr,dh,P)];    
                     
                    BestZss(dr,dh,P)=norminv(PH_Temp(Temp_CL(1))); 
                    BestZns(dr,dh,P)=norminv(PFA_Temp(Temp_CL(1))); 
                     
           % find best drtag of the overall system        (Which dtag ? R or H)  
                    Bestdtag(dr,dh,P)=BestZns(dr,dh,P)-BestZss(dr,dh,P);                              
                    Bestlnbeta(dr,dh,P)=-0.5.*(BestZss(dr,dh,P).^2-BestZns(dr,dh,P).^2); 
                     
                    if Temp_CL(1)==4 %If the best CL is R 
                        Bestdtagsys(dr,dh,P)=drvector(dr); 
                        Bestlnbetasys(dr,dh,P)=-4+(brs_VIsR(dr,dh,P)-1).*0.2; 
                    end 
  
                end     % dr 
            end         % dh 
            toc 
        end             % P 
  
    % Calculate the ratio between the:  
    %   1. objective function and the time for recognize. 
    %   2. objective function and the operation cost. 
        HOVc2Vt=HOVcs./HOVts; % ratio between Vc and Vt 
        HOVT2VI=(-1)*HOVTs./(HOVIs-HOVTs); % the Cost precentage 
        HO_Vt = (HOVts./Vt); 
        HO_Vc = (HOVcs./Vc); 
        HO_P_Ratio = HOPfa./HOPHs; 
         
        RVc2Vt=RVcs./RVts; 
        RVT2VI=RVTs./(RVIs-RVTs)*(-1); 
        R_Vt = (RVts./Vt); 
        R_Vc = (RVcs./Vc); 
        R_P_Ratio = RPfa./RPHs; 
         
        HORVc2Vt=HORVcs./HORVts; 
        HORVT2VI=HORVTs./(HORVIs-HORVTs)*(-1); 
        HOR_Vt = (HORVts./Vt); 
        HOR_Vc = (HORVcs./Vc); 
        HOR_P_Ratio = HORPfa./HORPHs; 
         
        HORrVc2Vt=HORrVcs./HORrVts; 
        HORrVT2VI=HORrVTs./(HORrVIs-HORrVTs)*(-1); 
        HORr_Vt = (HORrVts./Vt); 
        HORr_Vc = (HORrVcs./Vc); 
        HORr_P_Ratio = HORrPfa./HORrPHs; 
         
 % Calculate the optimal beta based on the indices found for each CL 
        beta_rhHO=-4+(brhs_VIsHO-1).*0.2; 
        beta_rhR=-4+(brhs_VIsR-1).*0.2; 
        beta_rhHORr=-4+(brhs_VIsHORr-1).*0.2; 
        beta_rhHOR=-4+(brhs_VIsHOR-1).*0.2; 
         
        beta_hHO=-4+(bhs_VIsHO-1).*0.2; 
        beta_hR=-4+(bhs_VIsR-1).*0.2; 
        beta_hHORr=-4+(bhs_VIsHORr-1).*0.2; 
        beta_hHOR=-4+(bhs_VIsHOR-1).*0.2; 
  
        beta_rHO=-4+(brs_VIsHO-1).*0.2; 
        beta_rR=-4+(brs_VIsR-1).*0.2; 
        beta_rHORr=-4+(brs_VIsHORr-1).*0.2; 
        beta_rHOR=-4+(brs_VIsHOR-1).*0.2; 
     
  
      %  Create matrix for each Beta (rh , h , r) 
     
        Allbeta_rh(:,:,:,1)=beta_rhHO; 
        Allbeta_rh(:,:,:,2)=beta_rhHORr; 
        Allbeta_rh(:,:,:,3)=beta_rhHOR; 
        Allbeta_rh(:,:,:,4)=beta_rhR; 
     
        Allbeta_h(:,:,:,1)=beta_hHO; 
        Allbeta_h(:,:,:,2)=beta_hHORr; 
        Allbeta_h(:,:,:,3)=beta_hHOR; 
        Allbeta_h(:,:,:,4)=beta_hR; 
  
        Allbeta_r(:,:,:,1)=beta_rHO; 
        Allbeta_r(:,:,:,2)=beta_rHORr; 
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        Allbeta_r(:,:,:,3)=beta_rHOR; 
        Allbeta_r(:,:,:,4)=beta_rR; 
  
       % save e:\work\analysis\OF_optBeta_data2 
        tmp=['OF_optBeta_Ratio_',VARstr,'_td_',td,'.mat'] 
        eval(['save e:\work\analysis\td\',tmp])    
        beep 
         
  
   end         % VAR1 
     

Sensitivity analysis of the betas 

% Sensitivity analysis of the betas 
  
clear 
clc 
close all 
  
tic 
  
  
 dhvector= [-0.5:-0.5:-3]; 
 drvector= [-0.5:-0.5:-3]; 
 Ps=[0.1,0.5,0.9];     %probability for object to be target     
beta=-4:0.2:4;  
  
 VFA2H=0.2; %5 
        VARstr=num2str(VFA2H); 
  
                     % The constants 
         
                Vc=-2; % the cost of one object recognition operation (Hit or False) 
                VCstr=num2str(-Vc); 
                Vt=-2000/3600; % the cost of one time unit 
                Vtstr=num2str(-Vt*3600); 
                tr=0.01; % The robot time.  sec/object on average 
  
  
          fn1=['OF_optBeta_Ratio_',VARstr,'.mat']; 
        var1 = (' Allbeta_r Allbeta_h Allbeta_rh BestCL Vi_max brhs_VIsHO brs_VIsHO bhs_VIsHO 
brhs_VIsR brs_VIsR bhs_VIsR brhs_VIsHOR brs_VIsHOR bhs_VIsHOR brhs_VIsHORr brs_VIsHORr 
bhs_VIsHORr'); 
        eval(['load e:\work\analysis\',fn1 var1]) 
                 
  
            P = 3; % This is for the index of Ps 
            Psstr=num2str(Ps(P)); 
     
                dh=1      % the index of d' for human (second detector) 
                h=-dhvector(dh);  
                Dh=num2str(h); 
     
                 dr=1        % the index of d' for robot (first detector) 
                        r=-drvector(dr) ; 
                    Dr=num2str(r); 
                    figure('Name',['Dr =',Dr,'  Dh =',Dh,'  Ps 
=',Psstr],'NumberTitle','off','color','white');                   
                
                    %load the data was created with Database.m  
                    
fn=['OF_dh_',Dh,'_dr_',Dr,'_Ratio_',VARstr,'_Vc_',VCstr,'_Vt_',Vtstr,'_Ps_',Psstr,'.mat'] 
                    var =[' VIsHO VIsR VIsHOR VIsHORr']; 
                    eval(['load e:\work\db\',fn var])  
   % Sens of Br  
                    Bcl = BestCL(dr,dh,P); % Saving the best CL 
                    Vmax = Vi_max(dr,dh,P); % Saving the max value of the objective function 
                    Bmax = Allbeta_r(dr,dh,P,Bcl); 
                    ViHO = VIsHO(brhs_VIsHO(dr,dh,P),bhs_VIsHO(dr,dh,P),:);  
                    ViHOR = VIsHOR(brhs_VIsHOR(dr,dh,P),bhs_VIsHOR(dr,dh,P),:); 
                    ViHORr = VIsHORr(brhs_VIsHORr(dr,dh,P),bhs_VIsHORr(dr,dh,P),:); 
                    ViR = VIsR(brhs_VIsR(dr,dh,P),bhs_VIsR(dr,dh,P),:); 
                    subplot(1,3,1); 
                    f1=plot 
(beta,ViHO(:),'b',beta,ViHORr(:),'c',beta,ViHOR(:),'g',beta,ViR(:),'r',Bmax,Vmax,'ok') 
                    set(f1,'LineWidth',1.5); 
                    set(gca,'XTick',-4:1:4); 
                    title(['Dr = ',Dr,' Dh = ',Dh,' Ps = ',Psstr]); 
                    xlabel ('LnBetaR'); 
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                    ylabel ('Vi'); 
                    grid on; 
                     
        % Sens of Bh  
                    Bmax = Allbeta_h(dr,dh,P,Bcl); 
                    ViHO = VIsHO(brhs_VIsHO(dr,dh,P),:,brs_VIsHO(dr,dh,P));  
                    ViHOR = VIsHOR(brhs_VIsHOR(dr,dh,P),:,brs_VIsHOR(dr,dh,P)); 
                    ViHORr = VIsHORr(brhs_VIsHORr(dr,dh,P),:,brs_VIsHORr(dr,dh,P)); 
                    ViR = VIsR(brhs_VIsR(dr,dh,P),:,brs_VIsR(dr,dh,P)); 
                    subplot(1,3,2); 
                    f2=plot 
(beta,ViHO(:),'b',beta,ViHORr(:),'c',beta,ViHOR(:),'g',beta,ViR(:),'r',Bmax,Vmax,'ok') 
                    set(f2,'LineWidth',1.5); 
                    set(gca,'XTick',-4:1:4); 
                    title(['Dr = ',Dr,' Dh = ',Dh,' Ps = ',Psstr]); 
                    xlabel ('LnBetaH'); 
                    ylabel ('Vi'); 
                    grid on; 
                     
       % Sens of Brh  
                    Bmax = Allbeta_rh(dr,dh,P,Bcl); 
                    ViHO = VIsHO(:,bhs_VIsHO(dr,dh,P),brs_VIsHO(dr,dh,P));  
                    ViHOR = VIsHOR(:,bhs_VIsHOR(dr,dh,P),brs_VIsHOR(dr,dh,P)); 
                    ViHORr = VIsHORr(:,bhs_VIsHORr(dr,dh,P),brs_VIsHORr(dr,dh,P)); 
                    ViR = VIsR(:,bhs_VIsR(dr,dh,P),brs_VIsR(dr,dh,P)); 
                    subplot(1,3,3); 
                    f3=plot 
(beta,ViHO(:),'b',beta,ViHORr(:),'c',beta,ViHOR(:),'g',beta,ViR(:),'r',Bmax,Vmax,'ok') 
                    set(f3,'LineWidth',1.5); 
                    set(gca,'XTick',-4:1:4); 
                    title(['Dr = ',Dr,' Dh = ',Dh,' Ps = ',Psstr]); 
                    xlabel ('LnBetaRH'); 
                    ylabel ('Vi'); 
                    grid on; 

Sensitivity analysis of d’r 

 
% Sensitivity analysis of the Dr 
  
clear 
clc 
close all 
  
tic 
  
  
 dhvector= [-0.5:-0.5:-3]; 
 drvector= [-0.5:-0.5:-3]; 
 Ps=[0.1,0.5,0.9];     %probability for object to be target     
  
     
    Ratio=0.2; %5 
     
        VARstr=num2str(Ratio); 
  
                 
        fn1 =['OF_optBeta_Ratio_',VARstr,'.mat']; 
        var1 = (' Vi_max HOVIs HORrVIs HORVIs RVIs'); 
        eval(['load e:\work\analysis\',fn1 var1]) 
                
         
       
        for P=1:length(Ps) 
            Psstr=num2str(Ps(P)); 
            figure('Name',['Ratio',VARstr,'  Ps =',Psstr],'NumberTitle','off','color','white'); 
             
            for dh=1:length(dhvector)        
                h=-dhvector(dh);  
                Dh=num2str(h); 
     
    
                    subplot(2,3,dh); 
                   f1=plot 
(dhvector,HOVIs(:,dh,P),'b',dhvector,HORrVIs(:,dh,P),'c',dhvector,HORVIs(:,dh,P),'g',dhvector,RVIs(:
,dh,P),'r') 
                    set(f1,'LineWidth',1.5); 
                    set(gca,'XTick',-4:1:4); 
                    title([' Dh = ',Dh]); 
                    xlabel ('Dr'); 
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                    ylabel ('Vi'); 
                    grid on; 
                     
            end         % dh 
            toc 
        end             % P 
 

Sensitivity analysis of d’h 

% Sensitivity analysis of  Dh 
  
  
clear 
clc 
close all 
  
tic 
  
  
 dhvector= [-0.5:-0.5:-3]; 
 drvector= [-0.5:-0.5:-3]; 
 Ps=[0.1,0.5,0.9];     %probability for object to be target     
  
     
    Ratio=0.2; %5   %The ratio == (Wcr-Wfa)/(Wh-Wm) 
     
        VARstr=num2str(Ratio) 
  
      % Load the Data files          
                 
         fn1 =['OF_optBeta_Ratio_',VARstr,'.mat']; 
        var1 = (' Vi_max HOVIs HORrVIs HORVIs RVIs'); 
        eval(['load e:\work\analysis\',fn1 var1]) 
                
         
        for P=1:length(Ps) 
            Psstr=num2str(Ps(P)); 
            figure('Name',['Ratio',VARstr,'  Ps =',Psstr],'NumberTitle','off','color','white'); 
             
                for dr=1:length(drvector)      % the range of d' for robot (first detector)          
                    r=-drvector(dr) ; 
                    Dr=num2str(r); 
  
                    subplot(2,3,dr); 
      
              % Graph properties 
                    f1=plot 
(dhvector,HOVIs(dr,:,P),'b',dhvector,HORrVIs(dr,:,P),'c',dhvector,HORVIs(dr,:,P),'g',dhvector,RVIs(d
r,:,P),'r') 
                    set(f1,'LineWidth',1.5); 
                    set(gca,'XTick',-3:0.5:-0.5); 
                    title([' Dr = ',Dr]); 
                    xlabel ('Dh'); 
                    ylabel ('Vi'); 
                    grid on; 
                     
       
  %              end     % dr 
            end         % dh 
            toc 
        end             % P    
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Appendix IV: Additional results of ‘Type 1’ systems 

Figure A-1 presents additional results of ‘Type 1’ systems. In the following results (figure A-1) 

the ratios between the objective function weights (WFA2H, WCR2M and WM2H) were set with different 

values than the results presented in the work. Therefore, these results reflect different systems with 

different assignments.   

 
Figure A-1: Example of ‘Type 1’ systems best operational level maps for different target probabilities. HR – 

Cyan, HOR - Yellow and R – Red. 

 

The tendency of the best operational level maps as a function of the target probability match the 

behavior of ‘Type 1’. As target probability increases, the HR and HOR levels become more 

dominant as the best levels. Notice that in this example (Figure A-1), as well, the human operator 

by himself (H level) is not the best level for any case.  
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Appendix V: Additional results of ‘Type 2’ systems 

Figure A-2 presents additional results of ‘Type 2’ systems. In the following results (figure A-2) 

the ratios between the objective function weights (WFA2H, WCR2M and WM2H) were set with different 

values than the results presented in the work. Therefore, these results reflect different systems with 

different assignments.   

 

Figure A-2: Example of ‘Type 2’ systems best operational level maps for different target probabilities. HR – 

Cyan, HOR - Yellow and R – Red. 

 

The results are different than the results which are presented in the work. However, the 

tendency of the best operational level maps as a function of the target probability is the same and 

matches to the definition of ‘Type 2’ behaviour. As target probability increases, the R level becomes 

more dominant.  
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Appendix VI: Additional results of the symmetry property 

Figures A-3 and A-4 present an example of the symmetry property for ‘Type 1’ systems. The 

objective function score maps of two different ‘Type 1’ systems show an identical operational level 

maps, which is presented in figure A-1.  

 

Figure A-3: Example of ‘Type 1’ objective function graph where the system’s goal is achieved by giving high 

reward for ‘correct rejection’ proportionally to ‘false alarm’ 
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Figure A-4: Example of ‘Type 1’ objective function graph where the system’s goal is achieved by giving high 

penalty for ‘false alarm’ proportionally to ‘correct rejection’ 
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Appendix VII: Pseudo code of testing the shift in the best operational 

level maps 

In order to examine the symmetry which was found, a new simulation was conducted which 

aimed to examine the behaviour of the best operational level maps in the transition between the 

symmetric weights. The following code presents the analysis between hit weight (WH) and miss 

weight (WM). The same logic was implied for the analysis between correct rejection weight (WCR) 

and false alarm weight (WFA). 

 

 

WH = 20 

WM = 5 

∆ = |WH – WM| = 15 

µ = ∆/10 = 1.5 

for i=0 to 10 

WH = WH – i*µ 

WM = WM + i*µ 

. 

. 

. 
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Appendix VIII: Results of ‘Type 2’ sensitivity analysis of βs 

The analysis focused on three levels of target probability: Low (Ps = 0.1), Meduim (Ps = 0.5) 

and High (Ps = 0.9) and the cases where d’h > d’r. The following results are for system of ‘Type 2’ 

where ∆1/∆2 = 1/5. It should be noted that throughout the entire sensitivity analysis the term ‘small 

deviations’ refers to ±1 deviations from the optimal value of the examined β.    

 

Low Target Probability (0.1)  

Contrary to the results of ‘Type 1’, for cases where R level was the best level, small deviations 

(decreasing) from optimal βr force level shifting to one of the collaboration levels: HR or HOR 

(Figure A-13).  

 

Figure A-5: βs analysis – low target probability and R is the best level 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H 

HR 

HOR 

R 



84 

 

Figure A-14 presents a case where the target probability is low and R is not the best level. 

 

  
Figure A-6: βs analysis – low target probability and R is not the best level 

 

Results show that small deviations from each of the three βs can cause level shifting between 

the collaboration levels (HR and HOR). However, for any small deviation, the best operation level 

will remain HR or HOR. The difference between the results of the two types is derived from the 

fact that in ‘Type 2’, when the target probability is low, the collaboration levels (HR and HOR) are 

the most dominant best levels. 

 

 

Medium Target Probability (Ps  = 0.5) 

The results for the case where Ps = 0.5 depends on the value of d’h. Figure A-15 presents a case 

where d’h is low (1.5).  

   

H 

HR 
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Figure A-7: βs analysis – medium target probability and low d’h 

 

In all the cases where d’h is low (1.5 or less), the best level in the optimal case is R (the red 

line). For these cases, small deviations of βr (increasing) will enforce level shifting to one of the 

collaboration levels (HR or HOR) in order to maintain optimum. 

Figure A-16 presents a case where d’h is high (above 1.5), thus, the optimal operation level is 

HOR. 

 
Figure A-8: βs analysis - medium target probability and high d’h  
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Results show that small deviations from any β will not affect the best operation level. 

 

High Target Probability (Ps  = 0.9) 

In ‘Type 2’ systems, when the target probability is high, R level is the most dominant 

operational level. For all the tested cases, when the R level was the best level, small deviations from 

the optimal βr did not force level shifting and the R level remained the best (Figure A-17). 

 

 

 

 
 Figure A-9: βs analysis – high target probability  
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Appendix IX: Results of ‘Type 2’ sensitivity analysis of d’r and d’h 

The analysis was performed for both sensitivities: d’h and d’r. The following results are for 

system of ‘Type 2’ where 1

2

1

5

∆
=

∆
.  

 

d’r Analysis 

 

Figures A-18, A-19 and A-20 present d’r analysis for: low, medium and high target probabilities 

respectively.   

 

 

 

 

 
 
Figure A-10: Sensitivity analysis of d’r – PS = 0.1 
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Figure A-11: Sensitivity analysis of d’r – PS = 0.5 

 

 

 
Figure A-12: Sensitivity analysis of d’r– PS = 0.5 

 

Results show that the influence of d’r on R level depends on the target probability. As target 

probability increases, changes in d’r have less influence on R level (notice that the gradient of R 
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level where PS = 0.1 is steeper for the case where PS = 0.9). In addition, as d’h increases, the 

influence of d’r on HR and HOR level decreases.  

 

 

d’h analysis 

 

Figures A-21, A-22 and A-23 present d’h analysis for: low, medium and high target 

probabilities, respectively.   

 

 

 

 
 
Figure A-13: Sensitivity analysis of d’h – PS = 0.1 

 

H 

HR 

HOR 

R 



90 

 

 
Figure A-14: Sensitivity analysis of d’h – PS = 0.5 

 

 
Figure A-15: Sensitivity analysis of d’h – PS = 0.9 

 

 

Results show that the influence of d’h on H, HR and HOR levels depends on the target 

probability. As target probability increases, changes in d’h have less influence on these levels. In 

addition, as d’r increases, the influence of d’h on HR and HOR level decreases. 

 


