Genetic Mapping of the Tsw Locus for Resistance to the Tospovirus Tomato spotted wilt virus in Capsicum spp. and Its Relationship to the Sw-5 Gene for Resistance to the Same Pathogen in Tomato

Molly Jahn,1 Ilan Paran,2 Katrin Hoffmann,3 Elaine R. Radwanski,1 Kevin D. Livingstone,1 Rebecca C. Grube,1 Ester Aftergoot,2 Moshe Lapidot,4 and James Moyer2

1Department of Plant Breeding, Cornell University, Bradfield Hall, Ithaca, NY 14853 U.S.A.; 2Department of Genetics and Plant Breeding, Agricultural Research Organization, The Volcani Center, P.O. Box 6, Bet Dagan, 50250, Israel; 3Department of Plant Pathology, North Carolina State University, Raleigh 27695 U.S.A.; 4Department of Virology, Agricultural Research Organization, The Volcani Center, P.O. Box 6, Bet Dagan, 50250, Israel

Accepted 15 February 2000.

The Tsw gene conferring dominant resistance to the Tospovirus Tomato spotted wilt virus (TSWV) in Capsicum spp. has been tagged with a random amplified polymorphic DNA marker and mapped to the distal portion of chromosome 10. No mapped homologues of Sw-5, a phenotypically similar dominant TSWV resistance gene in tomato, map to this region in C. annuum, although a number of Sw-5 homologues are found at corresponding positions in pepper and tomato. The relationship between Tsw and Sw-5 was also examined through genetic studies of TSWV. The capacity of TSWV-A to overcome the Tsw gene in pepper and the Sw-5 gene in tomato maps to different TSWV genome segments. Therefore, despite phenotypic and genetic similarities of resistance in tomato and pepper, we infer that distinct viral gene products control the outcome of infection in plants carrying Sw-5 and Tsw, and that these loci do not appear to share a recent common evolutionary ancestor.

Additional keywords: comparative genetic mapping, Nx, Solanaceae, viral genome reassortment.

Since the isolation and cloning of Pto in tomato, dramatic advances have occurred in our understanding of the molecular structure of dominant plant disease resistance (R) genes involved in gene-for-gene interactions (Martin et al. 1993). Analyses of cloned R genes and surrounding sequences have led to hypotheses concerning R gene function during a host’s response to pathogen infection, and how these sequences evolve (Meyers et al. 1998; Ronald 1998; Thomas et al. 1998). The precise details of the recognition of infection by the host, however, and the downstream events that result in resistance to infection, remain largely unknown (Innes 1998). The extent to which results from one host-pathogen interaction will illuminate mechanisms of resistance to other pathogens in that host or in other host species also remains unclear.

Several lines of evidence suggest that many of the plant genes involved in mounting resistant responses may be widely conserved, both within a given host for different pathogens and even between host species. Striking sequence similarities have been noted among cloned R genes that confer resistance to fungi, bacteria, nematodes, viruses, and insects in both monocotyledonous and dicotyledonous hosts (Bent et al. 1994; Milligan et al. 1998; Parker et al. 1997; Salmeron et al. 1996; Song et al. 1995; Rossi et al. 1998; Whitham et al. 1994). These similarities include well-defined motifs thought to be critical for gene function, such as nucleotide binding sites, leucine-rich repeats, and serine-threonine kinase-like domains (Ellis et al. 1999; Hammond-Kosack and Jones 1997; Thomas et al. 1997, 1998). Evidence that downstream events leading to resistance may also be conserved is suggested by expression of cloned transgenes in related plant species. When N, Pto, or Cf-9 are expressed transgenically in some heterologous solanaceous hosts, resistance is observed in an otherwise susceptible plant (Hammond-Kosack et al. 1998; Loh and Martin 1995; Rommens et al. 1995; Thilmony et al. 1995; Whitham et al. 1996). This observation establishes that, at least in these cases, all necessary components of the resistance response are present and functional in the related host species.

Despite the noted sequence similarities, a systematic review of all known map positions for R genes in three major solanaceous crop species (tomato, potato, and pepper) tied together by well-developed comparative genetic maps (Livingstone et al. 1999; Tanksley et al. 1992), revealed that resistance to the same pathogen never occurred in corresponding positions (Grube, Radwanski, and Jahn, in press). Only infrequent examples of limited positional correspondence of R genes for the same general class of pathogen have been noted, e.g., among the grasses (Hartl et al. 1993; Schönfeld et al. 1996; Yu et al. 1996). In fact, the only case where resistance to the same pathogen has been attributed to evolutionarily related loci from different host species involves the Hm-1 locus (Multani et al. 1998), which is likely to be entirely unrelated to gene-for-gene resistance (Johal and Briggs 1992).
The apparent lack of correspondence of specificity among
R
genes from related hosts involved in gene-for-gene inter-
actions suggests that, among homologous loci, the mole-
cular determinants of resistance specificity (recognition) may be
evolving at a very different rate from the general resistance
function (signal initiation). If this is the case, we might expect
to see two types of consequences. First, if an
R
gene became
duplicated, the repeated sequences could diverge to give rise
to new specificities, either to very closely related pathogens,
as observed for the
Cf
loci in tomato and the
L
locus in flax (Ellis et al. 1999; Thomas et al. 1998), or to pathogens
belonging to diverse classes, as observed for
Gpa-2
and
Rx
in potato (van der Voort et al. 1999). This divergence might oc-
cur very quickly, particularly if relatively few changes in nu-
cleotide sequence could result in altered specificity, as appears
to be the case. The second possible consequence is that host
loci that are not closely related evolutionarily might still be
involved in recognition of the same pathogen (although not
necessarily the same pathogen gene products) and the same or
very similar downstream events may be triggered, resulting in
phenotypically similar resistance responses. In this case, the
interactions of host and pathogen gene products that initially
"trigger" resistant response may be dissimilar, but the conse-
quences of that interaction may be similar or the same.

The Solanaceae are unique in the extent to which agricul-
turally important family members are infected by the same or
very closely related plant pathogens, making it possible to ex-
amine the second of the two patterns of relationship described
above. These include two important and well-characterized
viruses for which
Tsw
has been identified in
Capsicum
annuum, and
L. pimpinellifolium
(Whitham et al. 1994) and the
Tospovirus
Tomato spotted wilt virus (TSWV) (Brom-
menschkenkel and Tanksley 1997; S. D. Tanksley, personal
communication). This study focuses on resistance to
TSWV
, a widely distributed pathogen of >800 plant species including
tomato and pepper (
Capsicum spp.) (Edwards and Christie 1997; Roselló
et al. 1996). The tripartite, single-stranded genome of
TSWV
is composed of linear RNA molecules designated
S,
M,
and
L
(see Munford et al. 1996 and references therein). Sequencing of these RNA components re-
vealed that the
L
RNA encodes an RNA-dependent RNA poly-
merase, the
M
RNA encodes the precursor to the two
glycoproteins found in the viral envelope and the putative
movement protein, and the
S
molecule encodes the nucleocapsid protein and a nonstructural
protein of unknown function. Strategies to map viral functions to genome segments via
genome reassortment allow for rapid genetic analysis of the
viral determinants of the host-pathogen interactions (Qiu et al.
1998).

Because of the economic importance of agricultural losses
to
TSWV
, genetic resistance to this virus has been the focus of
research for nearly seven decades. The first genetic studies of
TSWV resistance in tomato reported five genes from two
Ly-copersicon spp.,
l. pimpinellifolium
(Samuel et al. 1930) and
l. esculentum
(Holmes 1948). Two dominant genes were
designated
Sw-1
and
Sw-1
, and six recessive genes were
designated
sw-2, sw-3, and sw-4
(Flinay 1953). In all cases,
these resistances were overcome quickly, and further work has
not been pursued. The
Sw-5
gene, first identified in
l. peruvia-
num, has proven more stable and less isolate specific than the
previously identified factors (Stevens et al. 1992, Roselló et
al. 1998). In plants carrying
Sw-5
, no mosaic symptoms are
observed after inoculation, although necrotic local lesions may
appear on inoculated leaves. Rarely, this necrosis spreads
through the plant, resulting in death. The
Sw-5
locus has been
genetically mapped in tomato (Stevens et al. 1995); the cDNA has
been cloned (Brommenschenkel and Tanksley 1997) and
sequenced, and its homologues have been mapped in tomato (S. D. Tanksley, personal communication). Recently, another
TSWV
R gene from
l. peruvianum
has been designated
Sw-6
(Roselló et al. 1998). The locus has not been mapped, but, in
contrast to
Sw-5, Sw-6
protects against a narrower range of
viral isolates and confers only partial resistance to thrips in-
oculation (Roselló et al. 1998).

In
Capsicum annuum,
the only locus known to confer re-
sistance to
TSWV
has been designated
Tsw
(Black et al. 1991;
Boiteux et al. 1993).
Tsw
has been identified in
l. chinense
Tsw
often
display no symptoms after mechanical inoculation, but occa-
sionally they develop local necrotic lesions followed by pre-
mature abscission of the infected leaf (Boiteux 1995), similar
to what is observed in tomato plants carrying the
Sw-5
gene. Furthermore, in preliminary studies, the isolate specificity of
Tsw
appeared to be similar to that of
Sw-5.

The first specific goal of this research was to map the
Tsw
locus for resistance to
TSWV
in pepper. Because of the apparent similarities between resistant responses to
TSWV
mediated by
Sw-5
and
Tsw
in pepper, our next goal was to investigate the comparative genetics of resistance to
TSWV
in order to shed light on the evolutionary and mechanistic relationship between these solanaceous
R
genes.

RESULTS

RAPD marker linked to
Tsw.

To efficiently screen for polymorphic markers linked to
TSWV resistance, an inbred backcross population was devel-
oped between
l. chinense
PI 152225 and
TSWV-susceptible
l. annuum
genotypes cvs. Cuby and Spartacus. After four
backcrosses to the respective susceptible parents to minimize
polymorphism unlinked to
TSWV,
one
TSWV-resistant BC
4
F
1
plants (10 each). Only one of these amplification products, a 270-bp fragment
(Q-06
270)
amplified by Q-06 (GAGCGCCTTG), cosegregated
with resistance (Fig. 1).

DNA samples from a larger (
l. annuum
cv. Maor × PI 152225)
BC
4
F
1
population of 116 plants evaluated for
TSWV
resistance were amplified with Q-06 to determine the genetic
distance between
Tsw
and
Q-06
270. Segregation observed for
TSWV resistance was consistent with a single-gene model (63:53 resistant: susceptible,
χ 2
for 1:1 = 0.86,
P > 0.5). Of the 116
BC
4
F
1
plants, four were recombinants between
Tsw
and
Q-06
270,
indicating the two loci are 3.45 cM (Kosambi) apart.
C. chinense PI 159234 contains Q-06 270 and is resistant to TSWV.

To place the locus defined by the Q-06 270 polymorphism on a comparative genetic map of Capsicum spp., and to obtain evidence of linkage between Q-06 270 and Tsw in an independent population, we mapped Q-06 270 and resistance to TSWV in the population used by Livingstone et al. (1999). This population is the basis of the only well-developed comparative genetic map in pepper. First, it was necessary to establish that the Q-06 primer amplified a fragment in the C. chinense parent of this population, PI 159234, that was identical in size to that found in PI 152225 (Fig. 2). Second, it was necessary to establish that the parents of this comparative mapping population contrasted with respect to response to TSWV; thus, an inbred line of C. chinense PI 159234 and the C. annuum parent, cv. NuMex RNaky, was screened with TSWV. Plants from PI 159234 uniformly fell into phenotypic classes judged resistant. They either remained asymptomatic or developed local or more extensive necrosis that occasionally killed the plant. The phenotypic response even within highly inbred lines of PI 159234 was considerably more variable than for any other resistant genotype screened (data not shown); however, in no case was the typical susceptible reaction, mosaic without necrosis, observed on these plants. In contrast, both resistant (PI 152225) and susceptible check plants including the genotype NuMex RNaky inoculated at the same time were uniformly resistant (asymptomatic) or susceptible (systemic mosaic symptoms), respectively. This confirmed that PI 159234 was resistant to TSWV according to the criteria of Moury et al. (1998).

Relationship of TSWV resistance in PI 152225 and PI 159234.

Previous work has not revealed distinguishable resistance alleles at the Tsw locus in C. chinense (Boiteux 1995), nor have additional resistance loci been reported in Capsicum spp. (Boiteux et al. 1993; Boiteux 1995; Moury et al. 1997). While definitive proof of allelism is not possible for dominant genes via genetic complementation analysis, two lines of evidence were obtained regarding the relationship of TSWV resistance

Fig. 1. Cosegregation of resistance to *Tomato spotted wilt virus* (TSWV) in *Capsicum* spp. with the 270-bp amplification product from primer Q-06 (Operon Technologies, Alameda, CA). Q-06 270 (arrow) is present in TSWV-resistant *C. chinense* PI 152225 (C) and 10 resistant BC₂F₁ plants, but absent in TSWV-susceptible *C. annuum* cv. Maor (A) and 10 susceptible BC₂F₁ plants.

Fig. 2. Amplification of DNA extracted from *Capsicum chinense* PI 152225 (lane 1), *C. chinense* PI 159234 (lane 2), *C. annuum* cv. Maor (lane 3), *C. annuum* cv. NuMex RNaky (lane 4), and one BC₂F₁ plant resistant to *Tomato spotted wilt virus* (lane 5) with primer Q-06 (Operon Technologies, Alameda, CA). The 270-bp amplification product (arrow) shown to cosegregate with resistance from *C. chinense* PI 152225 is also seen in the resistant *C. chinense* genotype used in the mapping population of Livingstone et al. (1999) and a resistant (Maor × PI 152225) BC₂F₁ plant and is absent in both susceptible *C. annuum* parents. Lane M contains a 1-kb ladder.
in PI 159234 and PI 152225, to rule out the possibility that two different genes with similar inheritance and phenotype exist in pepper for resistance to TSWV, as has been observed for the potyviruses (Grube, Blauth, et al., in press; Kyle and Palloix 1997). First, >200 (PI 159234 × PI 152225) F₂ plants were inoculated with TSWV, and no susceptible segregants were recovered. Therefore, if resistance in PI 152225 and PI 159234 is due to alleles at different loci, these loci must be tightly linked. Also, the two PI's showed identical patterns of susceptibility and resistance when screened with a panel of TSWV isolates, including those known to break resistance in pepper and tomato (data not shown).

Mapping of Q-06270 and Tsw on a comparative genetic map.

A precise estimate of the linkage intensity between Tsw and Q-06270 was established in the BC₁ population described above; however, a detailed comparative genetic map is not available for this population. Segregation at the locus defined by the Q-06 polymorphism was mapped in the interspecific population of Livingstone et al. (1999). Segregation of the Q-06270 band in 64 (C. annuum cv. NuMex RNaky × C. chinense PI 159234) F₂ plants indicated that this locus mapped to a framework position on linkage group 10 (Lg10) of Livingstone et al. (1999) within the interval defined by the framework markers CT57 and CD73. Q-06270 is located 9.1 cM from CT57 and 11.6 cM from CD73 (Fig. 3) and is linked at 2.1 cM to TG420 (LOD 8.92).

The F₂ Tsw genotypes were inferred from segregation of TSWV resistance in F₂ families derived from F₁ plants used to construct the Livingstone et al. (1999) map. Local necrotic lesions were first visible on resistant check genotypes and remained localized with TSWV and other TSWV isolates, including those known to break resistance in pepper and tomato (data not shown).

chlorotic ringspots that developed into systemic mosaic on leaves, necrotic lesions accompanied by mosaic on un inoculated leaves and stems, necrotic growing tips, fruit with large necrotic areas, and stunting. In some cases, it was difficult to determine whether the extensive necrosis was accompanied by mosaic as opposed to yellowing associated with plant death. Five classes were scored: systemic mosaic; systemic mosaic with necrosis; systemic necrosis; local lesions; and, no symptoms.

The position of the resistance phenotype could not be located more precisely than an extreme distal position on Lg 10. The first two classes were scored as susceptible and the last two classes were scored as resistant; however, it was unclear whether the families in the phenotypic classes showing systemic necrosis should be grouped with the susceptible or resistant class. All possibilities were tried and the only linkage obtained was to Lg 10 when the systemic necrotic classes were scored as susceptible. Pairwise linkages between the resistance phenotype and the following markers were observed: A187 (LOD 4.17, 14.71 cM), CD72 (LOD 3.29, 20.5 cM) TG420 (LOD 2.95, 19.5 cM), and TG408 (LOD 2.83, 20.4 cM) (Fig. 3). All these markers are linked to Q-06270 and identify a single region for the position of Tsw in the pepper genome. As expected because of difficulties with phenotypic analysis in this population, distances between these markers and Tsw are not consistent with the more accurate estimates of linkage between Q-06270 and Tsw in the tagging population, and represent a much less accurate placement for Tsw than the position of Q-06270 on the comparative map.

Sw-5 homologues do not cosegregate with TSWV resistance in pepper.

To examine whether there is any detectable relationship between the Sw-5 locus in tomato and Tsw in pepper, pepper homologues of the Sw-5 cDNA and CT220, a tomato cDNA clone tightly linked to Sw-5 in at least one tomato mapping population (Brommenschenkel and Tanksley 1997), were also mapped in Capsicum spp. CT220 detects only two or three bands in each of 12 different restriction endonuclease digests of the Capsicum spp. parental DNA (data not shown). In contrast, even under stringent hybridization conditions, the Sw-5 cDNA clone hybridizes to numerous pepper genomic DNA restriction fragment-length polymorphisms (RFLPs) (Fig. 4). The percentage of bands that are monomorphic between the parents ranges from approximately 30% (3/9 C. annuum; 3/8 C. chinense) for XbaI to 100% (5/5 for both parents) for BamHI.

Analysis of the segregation of the polymorphic bands to which Sw-5 cDNA hybridized (Sw-5 RFLPs) demonstrated that three Sw-5 RFLPs cosegregated with the framework marker, CT220, at the end of pepper Lg 3, and two other Sw-5 RFLPs mapped to nearby intervals. Two additional RFLPs were found to group loosely with Lgs 5 and 7, but could not be localized definitively on the map. Pepper homologue of Sw-5 that can be mapped resides on a different pepper linkage age group than Q-06270 and Tsw (Lg 10) (Fig. 5). While no Sw-5-related sequences were found in the same linkage group as Tsw and Q-06270, several of the Sw-5 homologues in pepper do correspond precisely to locations for Sw-5 and Sw-5 homologues in tomato (S. D. Tanksley, personal communication), as shown in Figure 5.
Mutations that overcome Sw-5 and Tsw map to different TSWV genome segments.

TSWV-A, a strain capable of overcoming resistance in tomato controlled by Sw-5, has been isolated and characterized (Cho et al. 1996). When a susceptible host plant such as tobacco is infected with TSWV-A and TSWV-D, a strain suppressed by both Tsw and Sw-5, reassorted viral progenies can be recovered that allow identification of the genome segment responsible for the resistance-breaking character. Using this method, Hoffmann et al. have established that the M RNA from TSWV-A (MA) determines the Sw-5–resistance-breaking character (K. Hoffmann, W. Qiu, and J. Moyer, unpublished). When peppers carrying Tsw were inoculated with TSWV-A, this strain also proved capable of overcoming resistance in peppers. When the same panel of reassortants used in the tomato study were inoculated onto pepper lines with and without the Tsw gene, the Tsw-resistance-breaking character mapped to the SA RNA, indicating that the ability to overcome Tsw and Sw-5 maps to different TSWV genome segments (Table 1). Therefore, despite the phenotypic similarity of the localizing necrotic responses to TSWV controlled by dominant R genes occurring in closely related host species, these results indicate that distinct viral genes or gene products control the outcome of infection in resistant tomato and pepper plants.

DISCUSSION

The Tsw locus in Capsicum spp. has been mapped to chromosome 10 in the vicinity of two very tightly linked, dominant, potyvirus R genes, Pvr4 and Pvr7 (Grube, Blauth, et al., in press). Clusters of disease resistance genes of both related and unrelated specificity have been observed in many plant species (Michelmore and Meyers 1998 and references therein), but this grouping is the first well-defined cluster of dominant R genes in pepper. Q-06270, the most reliable indicator of the position for Tsw, is 15 to 16 cm proximal to Pvr4 and Pvr7, but still well within the 30-cM limit defined by Michelmore and Meyers (1998), who suggested that the clustering of disease R genes may be a cause and/or consequence of evolutionary processes at R gene loci (e.g., Parniske and Jones 1999).

With a map position for Tsw established, the possibility of evolutionary relationships between Tsw and other solanaceous R genes with similar phenotype and specificity, including Sw-5, could be explored via comparative genetic mapping. Unique positions for Sw-5 homologues with no mapped counterpart in the other species occurred in both pepper and tomato, but at least three pepper Sw-5 homologues occurred at positions that did correspond to Sw-5 homologues in tomato. No Sw-5 homologues were mapped to pepper chromosome 10.

Fig. 4. Multiple Sw-5 homologues in Capsicum spp. and tomato. Autoradiogram of gel blots containing genomic DNA from C. annuum cv. NuMex RNaky (A lanes) and C. chinense PI 159234 (C lanes) digested with 11 restriction endonucleases and probed with the Sw-5 cDNA. Lanes at left contain DNA from tomato near-isogenic lines for Sw-5: TA209, susceptible (−) and TA277, resistant (+).
While this result is consistent with the hypothesis that Sw-5 and Tsw are not related evolutionarily, it could also be explained either by failure to map every Sw-5 homologue in the pepper genome due to lack of polymorphism, or by incomplete knowledge of all the TSWV R genes in pepper and tomato. Along these lines, a TSWV R gene from L. peruvianum has recently been designated Sw-6 (Roselló et al. 1998). The locus has not been mapped, but several phenotypic features appear to distinguish it from Tsw in pepper, as is also the case for the other Sw or sw genes in tomato. Sw-6 protects against a narrower range of isolates than Tsw or Sw-5, and confers only partial resistance to thrips inoculation (Roselló et al. 1998). None of the other reported TSWV R genes in tomato appear to share any mechanistic similarity with Tsw, nor do they appear to confer resistance to the same range of viral isolates.

As described above, an inherent limitation of mapping analyses is that it is often impossible to establish a definitive position for every gene homologue that occurs in a genome; however, evidence from genetic analysis of the resistance-breaking character in the virus further supports our conclusion that Tsw and Sw-5 are not recently derived from a common evolutionary ancestor. Although TSWV-A is capable of overcoming both Sw-5 and Tsw, the genome reassortment experiments demonstrated that different viral genes overcome the two host R genes. Identification of the specific sequences in viral genes that alter the outcome of infection will shed light on which TSWV gene products are critical determinants in these interactions and will also define useful systems for detailed molecular analyses of resistance mechanisms.

Our results suggest there may not be a direct evolutionary relationship between these genes for resistance to TSWV in pepper and tomato. This is similar to results obtained thus far in the Solanaceae for every resistance where a comparative genetic analysis is possible. Previous studies have shown that monogenic dominant, phenotypically similar resistance to TMV in tomato, tobacco, and pepper appears to be unrelated (Grube, Radwinski, et al., in press; Ohmori et al. 1998). This conclusion with regard to TMV resistance was confirmed, at least in part, by studies of resistance-breaking mutations in the virus (Meshi et al. 1988, 1989; Padgett and Beachy 1993; Watanabe et al. 1987). Likewise for potyvirus resistance in potato: Ry and Ra, the dominant genes in potato for resistance to the potyviruses Potato potyvirus Y (PVY) and Potato po-

Fig. 5. Comparative map showing positions of Tomato spotted wilt virus (TSWV) resistance loci and relevant Sw-5 homologues in tomato and Capsicum spp.

A, Map showing relationship between Sw-5, Sw-5 homologues in tomato on chromosome 9 mapped by S. H. Brommenschenkel, A. Frary, A. Frary, and S. D. Tanksley (personal communication) and corresponding regions in Capsicum spp. based on Livingstone et al. (1999). Tick marks on the chromosomes are framework positions for respective maps (framework positions are given on the tomato map only for markers mapped in pepper); lines connecting the two chromosomes show relative positions of presumed orthologous loci. Phenotypically defined TSWV resistance locus in tomato, Sw5, is indicated by asterisk. Other restriction fragment-length polymorphisms detected by the Sw-5 cDNA in both species are denoted as Sw5-H; minimum number of fragments mapped to that position is given in brackets. Markers in parentheses mapped between framework markers. B, Map showing relationship between Q-06270 in Capsicum spp. and corresponding regions in tomato. No mapped Sw-5 homologues in tomato were found in a position that corresponded to the Tsw locus in pepper.
positions, even between closely related hosts (Grube, Radwinski, et al., in press); however, the map position for one pepper Sw-5 homologue shows an intriguing parallel with recent results from potato. Hehl et al. (1999) observed that a homologue of the N gene from tobacco for resistance to TMV co-localized precisely with dominant resistance to the fungus Synchytrium endobioticum. Similarly, one pepper Sw-5 homologue mapped approximately 20 cM proximal to the cluster of Sw-5 homologues that occur in both pepper and tomato at the position of the Sw-5 locus in tomato (Fig. 5A). This Sw-5 homologue cosegregated precisely with TG424 in the population of Livingstone et al. (1999), except for two plants with an ambiguous genotype for TG424. In potato, the N$_{\text{alu}}$ gene, a dominant gene for necrotic localizing resistance to the Potexvirus Potato virus X, also occurs at TG424 (Tommiska et al. 1998). Sw-5 homologues have not been mapped in potato, but if cosegregation of a Sw-5 homologue in Solanum spp. and N$_{\text{alu}}$ were to be observed, this would provide evidence suggesting a relationship between these loci. Sequence comparison between Sw-5 and N$_{\text{alu}}$ when possible, may reveal that these genes are homologous and that their pathogen specificity has diverged, perhaps as a result of small changes in sequence localized to particular domains. If Sw-5 and N$_{\text{alu}}$ are homologues, this may indicate that the downstream consequences of the interaction between different hosts and different plant pathogens may be very similar.

In summary, a map position for the Tsw locus for resistance to TSWV in Capsicum spp. has been established and a tightly linked molecular marker has been identified that should facilitate efforts to develop tools for marker-assisted selection of this resistance. Further, we have shown that Tsw and Sw-5 do not appear to interact with the virus in the same way, and it is unlikely that they are recently derived from a common evolutionary ancestor. Despite these differences, it is still possible that gross phenotypic similarities are observed because the Tsw and Sw-5 gene products interact with the same or essentially similar downstream processes that result in expression of resistance. The co-localization of a Sw-5 homologue with a marker tightly linked to the N$_x$ locus in Solanum spp. suggests the possibility of a relationship between Sw-5 and the resistance allele at this locus. If these R genes prove to be homologous, sequence comparisons should reveal the molecular differences that account for functional divergence with respect to specificity, thus defining further hypotheses regarding the identities of and relationships among molecules involved in perceiving infection and producing resistant responses in plants.

MATERIALS AND METHODS

Plant germplasm and genetic populations.

To create suitable populations for tagging Tsw, C. chinense PI 152225 (USDA) was crossed to a susceptible bell, cv. Maor, and backcrossed four times to each of two susceptible bell C. annuum parents, cvs. Cuby and Spartacus. A second population, (C. annuum cv. NuMex RNaky × PI 159234) F$_2$, was used to place a marker identified in the tagging experiments on a comparative genetic map of pepper (Livingstone et al. 1999). To determine the relationship between TSWV resistance in PI 152225 and PI 159234, they were intercrossed and F$_2$ seed was harvested from individual F$_2$ plants. Two hundred (PI 159234 × PI 152225) F$_2$ plants were screened with TSWV to determine whether any segregation for susceptibility was observed.

TSWV screening.

TSWV strain BR-01 (Antignus et al. 1997) was maintained on tomato plants in the greenhouse at The Volcani Center, increased on Nicotiana tabacum cv. Xanthi prior to transfer to pepper, and used to inoculate (Maor × PI 152225) BC$_1F_1$

Table 1. Bioassay of Tomato spotted wilt virus (TSWV) on resistant and susceptible pepper genotypes

<table>
<thead>
<tr>
<th>TSWV genotypea</th>
<th>7 days post inoculation</th>
<th>14 days post inoculation</th>
<th>21 days post inoculation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fb</td>
<td>U</td>
<td>I</td>
</tr>
<tr>
<td>L$_5$M$_5$S$_0$</td>
<td>4/4csd</td>
<td>1/4</td>
<td>3/4II</td>
</tr>
<tr>
<td>L$_5$M$_5$S$_1$</td>
<td>5/5cs</td>
<td>0/5</td>
<td>4/II</td>
</tr>
<tr>
<td>L$_0$M$_5$S$_3$</td>
<td>5/5cs</td>
<td>0/5</td>
<td>5/5ns</td>
</tr>
<tr>
<td>L$_0$M$_5$S$_5$</td>
<td>5/5cs</td>
<td>0/5</td>
<td>5/5cs,ns</td>
</tr>
<tr>
<td>L$_0$M$_6$S$_3$</td>
<td>5/5cs</td>
<td>0/5</td>
<td>5/5cs,ns</td>
</tr>
<tr>
<td>L$_0$M$_6$S$_1$</td>
<td>5/5cs</td>
<td>0/5</td>
<td>5/5II</td>
</tr>
</tbody>
</table>

a Susceptible pepper genotype = Capsicum annuum cv. NuMex RNaky; resistant pepper genotype = C. chinense PI 159234.

b TSWV parental isolates D, A, and their re assortant progeny isolates. First line of data for each viral genotype is from experiment 1, second from experiment 2.

c Response observed on inoculated (I) and un inoculated (U) leaves of seedlings mechanically inoculated with TSWV.

d cs = chlorotic spots; ll = local lesions; () = number of plants that died after a severe systemic infection.

e Bold entries indicate viral genotypes that systemically infected the resistant pepper genotype, all of which contain the S RNA from isolate A.

f ns = necrotic spots.
seedlings at the two-true-leaf stage. Seedlings were dusted with Carborundum powder and both true leaves were inoculated twice, 3 days apart, with inoculum prepared by homogenizing systemically infected leaves with cold 0.1 M phosphate buffer, pH 7.0, containing 0.01 M sodium sulfite. After each inoculation, plants were rinsed with water, maintained in a greenhouse with a controlled temperature of 22°C, and checked daily between 5 and 45 dpi for symptom development.

TSWV-GT was used to screen the (NuMex RNaky × PI 159234) F1 families prepared as above, except inoculum was increased on N. benthamiana. Due to sterility in the interspecific comparative mapping population, only 48/75 F1 families were available with at least 12 plants per family. F1 plants were grown for 8 weeks, then held in the dark for a day preceding inoculation, shaded immediately prior to inoculation, and cut back. The youngest pair of fully expanded leaves that remained after pruning was mechanically inoculated.

Fresh inoculum was prepared for every 75 to 100 plants. Eleven days later, all new growth was reinoculated. Each plant was monitored for 109 dpi and scored for resistance or susceptibility. F1 families were classified into five groups (asymptomatic, local necrosis, systemic necrosis with pinpoint necrotic lesions, systemic necrosis without pinpoint lesions, mosaic without necrosis) to infer F2 genotypes at the Tsw locus.

In all populations and parental genotypes screened, plants with no symptoms, or with local necrotic lesions that appeared 4 to 7 dpi, were considered resistant. Plants that developed systemic mosaic or systemic necrosis that did not include pinpoint necrotic lesions were scored as susceptible.

Tagging Tsw and mapping the Q-06270 amplification product, Sw-5 homologues, and Tsw.

DNA samples from two TSWV-resistant BC1F1 plants, one each from the Cuby and Spartacus backgrounds, together with the corresponding susceptible recurrent parents, were extracted from young leaves as described in Prince et al. (1997) and screened with 400 decanucleotide primers. Pepper DNA (25 ng) was used as a template for polymerase chain reaction (PCR) amplification with RAPD kits A–C and J–U (Operon Technologies, Alameda, CA) and kits 1–5 (Advanced BioTechnologies, Leatherhead, UK). For PCR, 1 U of Biotaq DNA Polymerase (Bioprobe Systems, Montreuil Sous Bois, France) was used in a total volume of 15 μl. Amplifications were performed in a PTC-100 thermocycler (MJ Research, Incline Village, NV) as described by Paran et al. (1991).

Markers that showed differential patterns in the resistant and susceptible samples were re-screened on a larger population of 116 BC1F1 plants that had also been inoculated with TSWV. Only one cosegregated with resistance so this population was used to estimate the genetic distance between Tsw and the locus detected by primer Q-06270.

This same primer was used to amplify 64 DNA samples from the (NuMex RNaky × PI 159234) F2 mapping population (Livingstone et al 1999) to generate Q-06270 genotypes. For mapping Sw-5 homologues, filters were prepared as described in Livingstone et al. (1999) and hybridized with a clone of the Sw-5 cDNA kindly provided by S. H. Brommenschenkel and S. D. Tanksley. Segregation analysis for molecular marker data and the 39/48 inferred F2 genotypes for Tsw was performed with the Mapmaker/Exp v3.0b program (Lincoln et al. 1993) as described by Livingstone et al. (1999). The location of Tsw was found with the “near” command at a LOD > 2.5.

Viral genome reassortment studies.

TSWV-A (Regular 2A), provided by J. Cho, University of Hawaii, was isolated from a homozygous Sw-5 tomato cultivar. To create viral reassortants (Qiu et al. 1998), TSWV-A was coinfectected on N. benthamiana with TSWV-D, an isolate from The Netherlands recovered from Dahlia that is suppressed by Sw-5 (K. Hoffmann, W. Qiu, and J. Moyer, unpublished). Parental isolates were maintained in Emilia sonchifolia in the greenhouse and stored in systemically infected N. benthamiana tissue at −80°C. Systemically infected leaves were then used to inoculate N. tabacum cv. Burley 21. Single local lesions were transferred at least three times in N. tabacum cv. Burley 21 to select and segregate putative reassortants according to their local lesion type, shape, and time of appearance. Putative reassortants were then inoculated on N. benthamiana for extraction of total RNA (Qiu et al. 1998).

To determine the contributing parental isolate of each genome segment in the putative reassortants, genome markers located on the L, M, and S RNA were used as described by Qiu et al. (1998). Prior to mechanical inoculation of pepper, inoculum was transferred once onto N. benthamiana. PI 159234 and NuMex RNaky were grown in a greenhouse in Raleigh, NC, at 20 to 30°C and inoculated at the two-true-leaf stage. Symptoms were monitored at 2-day intervals after first appearance and recorded up to 28 dpi. Presence or absence of systemic symptoms at the end of the experimental period was confirmed by inoculation of N. benthamiana with upper noninoculated pepper leaves. Due to the rapid development of necrosis on very small plants very soon after inoculation, it was not possible to isolate total RNA to confirm the composition of the isolates directly from the necrotic leaf tissue of the pepper plants or to use systemically infected pepper leaves for back-inoculation.

NOTE ADDED IN PROOF

The CAPS marker reported by Moury et al. (2000) to be <1 cM from Tsw maps 2 cM proximal to CD72 at LOD > 8.

ACKNOWLEDGMENTS

We thank P. Himmel and J. Cho for providing inoculum, S. H. Brommenschenkel and S. D. Tanksley for unpublished data and access to the Sw-5 clone, C. Lewis for hybridizing pepper filters with the Sw-5 clone, J. P. Jantz, G. Moriarty, and B. Shipman for technical assistance, and M. M. Cadle and L. G. Landry for critical review of the manuscript. This work was supported in part by USDA NRICGP Award Nos. 91-37300-6564 and 94-37300-0333, BARD Award IS-2389-94 and the California Pepper Improvement Foundation/California Pepper Commission. K. D. L. and R. C. G. were supported by a DOE/NSF/USDA grant to the Research Training Group in Molecular Mechanisms of Plant Processes and gifts from Novartis, Seminis Vegetable Seeds, M. Laval-lard, and C. M. Werly.

LITERATURE CITED

Bent, A. F., Kunkel, B. N., Dahlbeck, D., Brown, K. L., Schmidt, R.,

Rpp5 from tomato is a member of the leucine-zipper, nucleotide binding, leucine-rich repeat family of plant disease resistance genes. Proc. Natl. Acad. Sci. USA 92:4181-4184.

Rpp5 shares similarity to the \textit{ Toll} and interleukin-1 receptors with the \textit{FRB} and \textit{ZF} domains that confer responsiveness to the fungal avirulence gene \textit{Rpm1}. Cell 10:1251-1266.

