

USE OF THAXTOMIN A AS A SELECTIVE AGENT FOR SCREENING POTATO GENOTYPES FOR RESISTANCE TO COMMON SCAB

EAPR Pathology Section Meeting

Jerusalem, Israel, 17 – 21 November 2013

Lea Hiltunen, Minna Ylikantola, Elina Virtanen & Jari Valkonen

Potato common scab

- Occurs worldwide
- Affects the quality of tubers
- Caused by several species of the genus Streptomyces
 - Multicellular, filamentous, Gram-positive Actinobacteria
 - Well known for production of secondary metabolites
 - Seed- and soil-borne
 - Able to live saprophytically
 - Can infect other tap root crops

Pathogenicity in the genus Streptomyces

Thaxtomin

- Phytotoxin
- The main pathogenicity determinant
- The mode of action: inhibition of cellulose biosynthesis in plant cells

Other factors involved, but not essential to pathogenicity

 Virulence related genes are present in some plant pathogenic Streptomyces species

Thaxtomins

Compound		R_1	R_2	R ₃	R_4	R_5	R_6
1	Thaxtomin A	Me	OH	Me	Н	OH	Н
2	Thaxtomin A o-isomer	Me	OH	Me	OH	Н	Н
3	Thaxtomin C	Me	Н	Н	Η	Н	Н
4	Thaxtomin B	Me	OH	Me	Η	Н	Н
5	C-14 deoxy thaxtomin B	Me	Н	Me	Η	Н	Н
6	Hydroxythaxtomin C	Me	OH	Н	Η	Н	Η
7	Thaxtomin A <i>p</i> -isomer	Me	OH	Me	Η	Н	OH
8	Hydroxythaxtomin A	Me	OH	Me	Η	OH	OH
9	15-de-N-methylthaxtomin A	Me	OH	Н	Η	OH	Η
10	12-de-N-methylthaxtomin A	Н	OH	Me	Η	OH	Н
11	des-N-methylthaxtomin C	Н	Н	Н	Η	Н	Н

- -

No reliable control measures

Measure	Reliability		
Clean seed	Insufficient; <i>Streptomyces</i> is endemic, ubiquitous, soil-borne		
Low soil pH (< 5.2)	Can fail, environmentally unfriendly		
Irrigation during early tuber formation	Successful in some locations		
Crop rotation	Ineffective		
Soil amendments	Results variable, inconsistent		
Sulfur fertilisers	Reduces scab severity in some locations		
Chemical control (soil fumigation)	Environmentally unfriendly, expensive		
Seed treatment with chemicals	Insufficient		
Biological control	Has potential, but results variable		
Resistant plant varieties	Most reliable, cost-effective and environmentally friendly, but no known complete resistance		

Can we utilise thaxtomins in resistance breeding?

- Would it be possible to use thaxtomins for screening potato genotypes *in vitro* for thaxtomin sensitivity?
- Does the thaxtomin sensitivity in vitro reflect scab sensitivity in the field?

Production of thaxtomins *in vitro*

- Thaxtomins were produced by culturing strains of *S. scabies* and *S. turgidiscabies* in oat meal broth
- Four thaxtomin compounds were isolated and identified

Hiltunen et al., J Agric Food Chem 2006

Effects of thaxtomins on micropropagated potato

Concentration of thaxtomin A (µg/ml)

Inhibition of growth by thaxtomins

_

Table 2. Values for 50% Inhibition of Growth (I_{50}) for Different Thaxtomin Compounds on Three Cultivars of Micropropagated Potato

potato cv.	compound	<i>l</i> ₅₀ <i>a</i> (ppb)
Matilda	thaxtomin A	30
	thaxtomin B	70
Sabina	C-14 deoxythaxtomin B	160
Cubinu	thaxtomin A ortho isomer thaxtomin B	400 550
	C-14 deoxythaxtomin B	590
Nicola	thaxtomin A thaxtomin A ortho isomer thaxtomin B C-14 deoxythaxtomin B	70 >1000 80 >1000

 a I₅₀ is the concentration that reduced shoot growth by 50% as compared to the control. ppb, parts per billion.

Hiltunen et al., J Agric Food Chem 2006

Responses of potato genotypes^{*} to thaxtomin A *in vitro* (0.1 μ g ml⁻¹) ranged from total inhibition of growth to stimulated growth

Hiltunen et al., Plant Pathol 2011

* cv. Ciklamen x cv. Superb (SW01015)

The selected potato genotypes were tested for their sensitivity to common scab in the glasshouse

Scab index = scab type x surface area covered by scab x 100/33

Hiltunen et al., Plant Pathol 2011

Correlation of the results from the *in vitro* bioassay and the glasshouse experiment

The selected potato genotypes showed variable resistance to common scab in the field

Scab index = scab type x surface area covered by scab x 100/33

Correlation of the results from the *in vitro* bioassay and the field experiments

Summary

The *in vitro* bioassay utilizing thaxtomin A as a selective agent

- Revealed differences between potato genotypes in thaxtomin sensitivity
- Predicted differences between genotypes in their tolerance to common scab in the glasshouse and in the field
- Could be used in resistance screening programs

Acknowledgements

University of Helsinki

Department of Applied Biology, Divisions of Pharmaceutical Biology and Pharmaceutical Chemistry Into Laakso Tuula Laine Jouko Närhi Lahja Pesonen Kati Takala Anja Weckman

MTT Agrifood Research Finland

Arjo Kangas Anu Kankaala Anna Sipilä Tapio Uotila Tiina Väyrynen

Charles University, Czech Republic Vladimír Chobot

Thank you!

n in