

EFFECT OF SOME CHEMO-AND ELECTROTHERAPIES ON POTATO VIRUS Y AND X INFECTED Solanum tuberosum L. PLANTLETS (cv. ROCLAS) Carmen Liliana BĂDĂRĂU, Nicoleta CHIRU, Ionela Cătălina GUȚĂ

Potato virus Y (PVY) (Potyviride)

CAN CAUSE stand loss, reduced yields, undersized tubers reduced quality HAS BECOME an **increasingly serious constraint** to seed potato **production** in the **world**

HOW?

- 1 chemotherapy?
- **2** essential oils?
- 3 electrotherapy?

EFFORTS to **ameliorate** PVY effects = **essential** for potato production

Potato virus X (PVX) (*Potexvirus*)

Occurs throughout commercial stocks of most varieties

Is responsible for many of the uncertainties and difficulties encountered in field inspections.

When Potato virus Y is present, synergy between these two viruses causes severe symptoms in potatoes Elimination PVX from potato supply = important for potato production

HOW? chemotherapy? essential oils? electrotherapy?

1. WHY CHEMOTHERAPY?

RIBAVIRIN (RBV)

(1,\u03c3-D-Ribofuranosyl-1,2,4triazole-3-carboxamide)

- Broad spectrum **anti-viral activities**,
- RBV5'-phosphate = inhibitor
 of inosine monophosphate
 (IMP) dehydrogenase [1]

Bibliography

[1] Cassel, A. C. 1987. In vitro induction of virus-free potatoes by chemotherapy. In: Biotrechnology in Agriculture and Forestry, Vol. 3Potato (ed.) Y.P.S. Bajaj, pp. 40-50, Springer-Verlag, Berlin, Germany
[2] Ward, P., Small, I., Smith, J., Suter, P., Dutkowski, R. 2005. Oseltamivir (Tamiflu) and its potential for use in the event of an influenza pandemic *The Journal of antimicrobial chemotherapy* 55 (Suppl 1): 5–21

OSELTAMIVIR (OSMV) (Tamiflu)

[ethyl (3R,4R,5S)-5-amino-4-acetamido-3-(pentan-3-yloxy)-cyclohex-1-ene-1carboxylate]

an antiviral prodrug
used to slow the spread of flu virus
(influenza A and B) by stopping from
chemically cutting with its host cell.
produced from shikimic acid, an
inhibitor of neuraminidase [2]

2. WHY electrotherapy?

is a simple method
the equipment used is not special or expensive

electric pulses = stimulants on plants differentiation *in vitro*electric current is applied to plant tissues for disrupt/degrade viral nucleoprotein and eliminate its virulence activity

3. WHY hidro-distilled **ESSENTIAL OILS (EOs)** from *Satureja hortensis?*

These EOs = a potential source of antimicrobial active compounds ?

3. WHY treatments with HYDROGEN PEROXIDE and ASCORBIC ACID ?

HYDROGEN PEROXIDE

Is believed to play two distinct roles -involves the oxidative burst in the hypersensitive response, which restricts pathogen growth, -activates plant defense responses, including induction of phytoalexins

H_2O_2 produced in

- excess is harmful,
- LOWER concentrations=BENEFICIAL

Bibliography

López-Delgado, H., H.A.Zavaleta-Mancera, M.E. Mora-Herrera, M.Vázquez-Rivera, F.X. Flores-Gutiérrez, and I.M. Scott, 2005. Hydrogen peroxide increases potato tuber and stem starch content, stem diameter and stem lignin content. *American Journal of Potato Research*, 82: 279–285.

Quan, L.J., Zhang, B., W.W. Shi, and Li, H.Y., 2008. Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. *Journal of Integrative Plant Biology*, 50: 2–18.

ASCORBIC ACID (AA)

-Participates in response to **both biotic and abiotic stresses**

Acts as an antioxidant, protecting the cell against oxidative stress caused by environmental factors and pathogens.
Changes in AA content can modulate systemic acquired resistance, acting as a signal transducing molecule

AA as a direct scavenger of ROS is the **major redox buffer** AA is a cofactor of ascorbate peroxidase, which converts violaxanthin de-epoxidase

Bibliography

Hammerschmidt, R., 2005. Antioxidants and the regulation of defense. *Physiological and Molecular Plant Pathology*, 66: 211–212

DECREASE the **PVY** and **PVX** infection level using:

> antiviral compounds (ribavirin +oseltamivir) in tissue culture

➤ several treatments (Satureja hortensis EOs, H₂O₂ and vitamine C) applied to microplants acclimatisated in green house

> electrotherapy

Essential oils

EXTRACTION of *EOs by* water vapours distillation <

The main volatils compounds

EOs from Satureja hortensis

Name	RT	Area%
Pinene α	4.68	11.27
Phellandrene α	4.80	0.46
Camphene	5.98	4.56
Pinene β	7.85	9.23
Myrcene β	11.85	1.09
CINEOL	14.00	47.01
Terpinene γ	15.45	0.62
Cymene P	16.49	2.31
Camphor	24.11	10.66
Linalool β	25.25	0.89
Bornyl Ac.	25.83	0.76
Cariophyllene α	26.21	4.67
Terpineol α	26.46	1.02
Cariophyllene β	27.90	0.48
Borneol	28.78	4.48
Cadinene	29.99	0.49

Biologic material -PVY inoculated plants (using a secondary infected source - cv. Record) -PVX inoculated plants (using a secondary infected source - cv. Bintje)

Plants PVY positif

1. Chemotherapy + treatments with EOs and antioxidants

protocole Clark and Adams (1977)

1. Chemotherapy – medium's variants for the steps S1 and S2

V1 Murashige and Skoog medium (MS) +Ribavirine (20mg/L) + Oseltamivir (40mg/L)

variants V2 Murashige and Skoog medium (MS) +Ribavirine (40mg/L) + Oseltamivir (40mg/L) S1 and S2

V3 Murashige and Skoog medium (MS) +Ribavirine (20mg/L) + Oseltamivir (80mg/L)

Medium

for

Single node cuttings were propagated in test tubes on Murashige and Skoog medium, at 20±1°C under a 16 h photoperiod (fluorescent lights, 400–700 nm)

PVX Mechanical cv Bintje cv Record variety Roclas or inoculation Single node transfer **Electrotherapy Nodal cuttings** on MS after transfer on variants V1-V9 desinfection+wash **ELISA Murashige Skoog** medium ELISA after 42 days for PVY, 38 ELISA after 40 days for PVX days for PVY, 36 inoculated days for PVX plants inoculated plants

2. Electrotherapy

1. Chemotherapy + treatments with *EOs* +AO

A. Effects of the treatments for PVY elimination

Plants acclimatisated and untreated with *EOs*+AO suffered significantly harmful effects **Plants acclimatised untreated**

Plants acclimatised treated with EOs +antioxidants

<u>Treated acclimatisated</u> <u>plants treated with</u> <u>EOs+AO</u> <u>The effects were reduced</u> by the <u>treatments</u>

Chemotherapy applied on material infected with potato virus Y (PVY) -THERAPY EFFICIENCY INDEX

Variant of the treatment		Regenera tion rate		Virus elimination	
				rate	
		NPT/ NPM	%	NPFV NPM	%
V	S 1	7/8	87.5	1/7	14.3
1	S2	11/14	78.6	3/11	27.3
▲	S 3	13/18	72.2	4/13	30.7
	PAUT	6/5	60	2/6	33.3
	PAT EOs+AO	7/8	87.5	3/7	42.9
V	S 1	5/8	62.5	2/5	40.0
	S2	10/14	71.4	7/10	70.0
	S3 (MS)	16/21	76.2	10/16	62.5
	PAUT	6/8	75	4/6	66.7
	PAT EOs+AO	6/8	75.0	5/6	83.3
V 3	S1	3/8	37.5	2/3	66.7
	S2	7/14	50.0	6/7	85.7
	S3 (MS)	9/16	56.2	7/9	77.8
	PAUT	5/7	71.4	3/5	60.0
	PAT EOs+AO	4/7	57.1	4/4	100.0

V1= MS +RBV(20mg/L) + OSMV(40mg/L) V2 = MS +RBV(40mg/L) + OSMV(40mg/L) V3= MS +RBV(20mg/L) + OSMV(80mg/L) MS =Murashige and Skoog RBV=Ribavirine; OSMV+ Oseltamivir NTP = number of tested plants (plants that survived) NMP = number multiplied plants NPFV = number of plants free of virus PAUT= plants acclimatised untreated

Plants acclimatised untreated with EOs+AO

V1= medium MS +**RBV**(20mg/L) + OSMV(40mg/L) V2 = medium MS +**RBV**(40mg/L) + OSMV(40mg/L) V3= medium MS +**RBV**(20mg/L) + OSMV(80mg/L) MS =Murashige and Skoog RBV=Ribavirine OSMV+ Oseltamivir

Chemotherapy applied on material infected with potato virus X (PVX) -THERAPY EFFICIENCY INDEX

Variant of the treatment		Regenera tion rate		Virus elimination	
		NPT/ %		rateNPFV%	
		NPM		NPM	
V 1	S 1	5/6	83.3	1/5	40
	S2	10/12	83.3	5/10	50
	S3	16/18	88.9	8/16	50.0
	PAUT	6/6	100	3/6	50
	PAT	5/6	83.3	3/5	60
	EOs+AO				
V 2	S 1	7/8	87.5	5/7	71.4
	S2	12/14	85.7	10/12	83.3
	S3 (MS)	22/24	91.7	18/22	81.8
	PAUT	7/8	87.5	5/7	71.4
	PAT	7/8	87.5	7/7	100
	EOs+AO				
V 3	S1	5/8	62.5	4/5	80
	S2	7/10	70.0	6/7	87.5
	S3 (MS)	10/16	62.5	9/10	90
	PAUT	4/6	66.7	3/4	66.67
	PAT	3/6	50.0	3/3	100
	EOs+AO				

V1= MS +**RBV**(20mg/L) + OSMV(40mg/L) V2 = MS +**RBV**(40mg/L) + OSMV(40mg/L) V3= MS +**RBV**(20mg/L) + OSMV(80mg/L) MS =Murashige and Skoog RBV=Ribavirine; OSMV= Oseltamivir NTP = number of tested plants (plants that survived) NMP = number multiplied plants NPFV = number of plants virus free PAUT= plants acclimatised untreated

Variant of the treatment

Error bars: +/- 1 SD

Plants acclimatised untreated with EOs+AO

V1= MS +**RBV**(20mg/L) + OSMV(40mg/L) V2 = MS +**RBV**(40mg/L) + OSMV(40mg/L) V3= MS +**RBV**(20mg/L) + OSMV(80mg/L) MS =Murashige and Skoog RBV=Ribavirin OSMV= Oseltamivir

2. Electrotherapy

A. Effects of electrotherapy treatments of PVY infected plantlets cv Roclas

Regeneration rate

^a number of regenerated plantlets; ^b number of explants treated

Results are the mean of 3 experiments.

Error bars: +/- 1 SD

Effects of the ELECTROTHERAPY at microplants infected with potato virus Y (PVY) -THERAPY EFFICIENCY

Error bars: +/- 1 SD

Results are the mean of 3 experiments.

RESULTS Effects of the ELECTROTHERAPY at microplants infected with potato virus Y (PVY) –Mean absorbances values

decreasement of OD to PVY infected plants

Results are the mean of 3 experiments.

2. Electrotherapy

B. Effects of electrotherapy treatments of **PVX** infected plantlets

Regeneration rate

(cv Roclas)

^a number of regenerated plantlets;
^b number of explants treated

Results are the mean of 3 experiments.

Error bars: +/- 1 SD

RESULTS Effects of the ELECTROTHERAPY at plants infected with potato virus X (PVX) -THERAPY EFFICIENCY

Error bars: +/- 1 SD

Bars with different letters differ significantly Duncan's test (P<0.05)

Effects of the ELECTROTHERAPY at plants infected with potato virus X (PVX) –Mean absorbances values

Variant of electrotherapy treatment

Error bars: +/- 1 SD The treatments lead up to an decresement of OD to PVX infected plants compared to their control Results are the mean of 3 experiments.

CONCLUSIONS

- Combined chemotherapy (V2: RBV 40mg/l + OSMV 40mg/l) +

treatments (*EOs*+AO) of acclimatisated plants (cv Roclas), have led to:

➢ 83.7% PVY free plants and 100% PVX free plants

➤ the higher values of the therapy efficiency index (TEI):

62.5 for PVY infected plants and 87.5 for PVX

- V 3 (RBV 20mg/l +OSMV 80mg/l) + treatments EOs +AO have led to the highest values for viruses elimination rate (100%), but decrease the regeneration rate (57% for PVY and 50% for PVX) \longrightarrow TEI had lower values than in variant V2.

-EOs **TREATMENTS** and hydrogen peroxide / ascorbic acid of acclimatised plants increase the TEI in all the variants .

Satureja hortensis oils + H₂O₂ (1mM) or AA (3mM)

BENEFICIAL EFFECTS on the plants obtained by chemotherapy from PVY and PVX infected POTATO sources

CONCLUSIONS

ELECTROTHERAPY

- The greatest value for therapy efficiency index (TEI) was obtained when the explants were exposed to **100mA for 10 minutes** :

- **52.4** (53.3; 50; 53.8) for PVY
- **74.3** (71.4; 66.7; 86.3) for PVX

-The most severe exposure at 100mA for 20 minutes resulted in 47.9% TEI for PVY and 61.5% TEI for PVX

- High values of regeneration rate but few virus free microplants for the lowest values of current intensity (40mA, 5 minutes) (77.1% and 27% for PVY; 73.3% and 43.3% for PVX)

- Electrotherapy have led to an decreasement of OD to all PVY and PVX regenerated plants obtained from infected sources

CONCLUSIONS

But.....

Some elements remain to be tested and/or improved

- the treatments success is cultivar dependent !
- the phytotoxicity of the treatments ?
- there are many other *EOs* that could be used!
- to define the efficiency of the treatments with bulked samples!

- to combine chemotherapy + electrotherapy + treatments with *EOs* and AO !

« Il ne faut jamais renoncer à la récolte des plantes aromathiques.... Pour ceci, penchez-vous jusqu'à la terre et érigezvous jusqu'aux ciels ! »

Maurice Messeque

