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Abstract

Sex pheromone biosynthesis in many moth species is controlled by a cerebral neuropeptide, termed pheromone biosynthesis activating
neuropeptide (PBAN). PBAN is a 33 amino acid C-terminally amidated neuropeptide that is produced by neuroendocrine cells of the
subesophageal ganglion (SEG). Studies of the regulation of sex pheromone biosynthesis in moths have revealed that this function can be
elicited by additional neuropeptides all of which share the common C-terminal pentapeptide FXPRL-4mi&eT, G, V). In the past
two decades extensive studies were carried out on the chemical, cellular and molecular aspects of PBAN and the other peptides (termed the
pyrokinin (PK)/PBAN family) aiming to understand the mode of their action on sex pheromone biosynthesis. In the present review we focus
on a few of these aspects, specifically on the: (i) structure—activity relationship (SAR) of the PK/PBAN family, (ii) characterization of the
PK/PBAN receptor and (iii) development of a novel strategy for the generation of PK/PBAN antagonists and their employment in studying
the mode of action of the PK/PBAN peptides.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction by the same group and enabled to determine its presence
and activity[77]. The assay involved injection of extracts
1.1. Sex pheromones in Lepidoptera that contained a pheromonotropic factor into females that do

not produce pheromone (either as a result of their ligation be-
The sexual communication between sexes in Lepidopterantween the head and the thorax or their use during photophase,
species is mediated mainly by sex pheromones, which arewhen sex pheromone is not produced) followed by analysis
volatile compounds used by the female to attract potential of the pheromone content in the gland at various times post-
mates from a distandd0]. Sex pheromones play an impor- injection, by capillary gas chromatograpfr].
tant role in the elicitation of mating behavior in moths and
are, therefore, crucial for successful mating. Understanding
the mechanisms that underlie sex pheromone production is,2. PBAN and the PK/PBAN family
thus, of major interest and importance.
Sex pheromones in Lepidopteran species are synthesize@®.1. Isolation and identification of PBAN and other
by females in a specialized gland, which is a modifica- pheromonotropic peptides
tion of the inter-segmental membrane (ISM) located be-
tween the eighth and ninth abdominal segm§g®s32] The The availability of the pheromonotropic bioassay enabled
pheromone-producing cells are epithelial cells, overlaid by a in 1989 to isolate and characterize PBAN fréinzea[79].
modified ISM cuticle which, in most Lepidopterans, is pro- PBAN was found to be a 33-amino acid. C-terminally ami-
duced by the cells themselves. The pheromone is produceddated neuropeptide and the peptide was termed Hez-PBAN
within the epithelial cells, transported through the cuticle via (homenclature according to Raina anédg),[78]. Since
special porous cuticular spines and disseminated from the1989 the primary sequence of PBAN has been determined in
surface[68,82] numerous other moth specigombyx mor[53], Lymantria
Several hundred Lepidopteran sex pheromones, occurringdispar [60], Helicoverpa assultgl6], Agrotis ipsilon[27],
in virgin female gland extracts and volatiles, have been iden- Mamestra brassica¢47] and Spodoptera littoralis[45]),
tified in the past three decades and their modes of action haveeither by sequencing of the purified neuropeptide or from
been studied extensively. Most Lepidopteran sex pheromonescloned cDNA or gene sequence (for review §&2,74,75]
are C10—-C18 aliphatic unsaturated aldehydes, alcohols or acand Table J). Since its first discovery, PBAN has been
etates and their structural diversity is indicated by differences reported to control sex pheromone biosynthesis in many
in the number of carbon atoms, in the positions and config- other moth species, and the peptide itself has been found in
urations of the olefinic bonds and in the nature of the func- many Lepidopteran species as well as in other insect orders
tional groupg15,95] Most pheromones are blends of several [32,74,75] Although it is generally agreed that pheromone
components, among which major or minor constituents play production in many Lepidopteran species is controlled by
important roles in the elicitation of the mating behavior. Mat- PBAN and possibly other members of the family (see below),
ing in moths usually occurs during a discrete period of the not all moths utilize PBAN as a pheromonotropic hormone.
photophase/scotophase cycle, and in most cases is nocturA few examples of alternative mechanisms are presented in
nal. Sex pheromones are crucial for successful mating anda recent review by Rafaeli and Jurerjkal].
for maintaining reproductive isolation among closely related  Studies of the regulation of sex pheromone biosynthesis

species sharing a common ecological niche. in moths have revealed that this function can be elicited by
additional neuropeptides isolated from various insects, all of

1.2. Neuroendocrine control of sex pheromone which share the common C-terminal pentapeptide FXPRL-

biosynthesis in moths amide X =S T, G or V) [1,30,55,56,94] Among these

peptides are the pyrokinins (PKs) (Lem-PK, Lom-PK-I and

Sex pheromone biosynthesis in moths is affected by Lom-PK-II) and the myotropins Lom-MT-Ito IV (myotropic
a variety of exogenous and endogenous factors such ageptides isolated from the cockroabBucophaea maderae
temperature, photoperiod, host plants, age and mating, asand the migratory locust,ocusta migratori [63,64,88,89]
well as by endocrine and neuroendocrine factors. A major and a myotropic peptide fror8chistocerca gregariéScg-
breakthrough in our understanding of the neuroendocrine MT-1) [97]. For details of the amino acid sequences of
mechanism involved in sex pheromone production occurredthese peptides setable 1 Additional peptides that were
in 1984, when Raina and Klufi77] first reported that found to stimulate sex pheromone biosynthesis are the
pheromone production in femaldelicoverpa(then Helio- pheromonotropin (Pss-PT) an 18-amino acid peptide isolated
this) zeamoths is controlled by a cerebral neuropeptide, from Pseudaletia(Mythimng separata[62] and diapause
which was termed pheromone biosynthesis activating neu-hormone (DH) isolated from the silk-worrB, mori[46], H.
ropeptide (PBAN). Direct evidence for the involvement of a zea[58], H. assultg16], A. ipsilon[27] andS. littoralis[45].
neuropeptide from the cerebral complex in sex pheromoneAll of these peptides were found to contain the “signature”
biosynthesis was first demonstrated by a simple and sensi-C-terminal sequence and have been designated the PK/PBAN
tive bioassay (pheromonotropic assay) that was developedfamily. In the past few years additional peptides were added
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Code name Insect species Amino acid sequence

Hez-PBAN Helicoverpa zea LSDDMPATPADQEMYRQDPEQIDSRTK¥SPRL-NH,
Bom-PBAN-I/MRCH Bombyx mori LSEDMPATPADQEMYQPDPEEMESRTRFSPRL-NH
Bom-PBAN-II Bombyx mori RLSEDMPATPADQEMYQPDPEEMESRTRYSPRL-NH>»
Lyd-PBAN Lymantria dispar LADDMPATMADQEVYRPEPEQIDSRNKYESPRL-NH»
Has-PBAN Helicoverpa assulta LSDDMPATPADQEMYRQDPEQIDSRTK¥SPRL-NH,
Agi-PBAN Agratis ipsilon LADDTPATPADQEMYRPDPEQIDSRTKY¥SPRL-NH»
Mab-PBAN Mamestra brassicae LADDMPATPADQEMYRPDPEQIDSRTKYSPRL-NH,
Spl-PBAN Spodoptera littoralis LADDMPATPADQELYRPDPDQIDSRTKYESPRL-NH»
Bom-DH Bombyx mori TDMKDESDRGAHSERGALGGPRL-NH,
Hez-DH Helicoverpa zea NDVKDGAASGAHSDRLGLWFGPRL-NH>
Has-DH Helicoverpa assulta NDVKDGAASGAHSDRLGLWFGPRL-NH>
Agi-DH Agratis ipsilon NDVKDGGADRAHSDRGGMWFGPRL-NH»
Spl-DH Spodoptera littoralis NEIKDGGSDRGAHSDRAGLWFGPRL-NH»
Lom-PK-I Locusta migratoria PEDSGDGWPQQPVPRL-NH»
Lom-PK-II Locusta migratoria pESVPTETPRL-NH,
Lem-PK Leucophaea maderae pETSTPRL-NH>
Pea-PK-4 Periplaneta americana GGGGSGETSGMWGPRL-NH»
Pea-PK-5 Periplaneta americana SESEVPGMWGPRL-NH»
Drm Drosophila melanogaster TGPSASSGLVWGPRL-NH>»
Lom-MT-I Locusta migratoria GAVPAAQFSPRL-NH»
Lom-MT-II Locusta migratoria EGDETPRL-NH»
Lom-MT-llI Locusta migratoria RQQMAFVPRL-NH>
Lom-MT-VI Locusta migratoria RLHQNGMPESPRL-NH»
Scg-MT-1 Schistocerca gregaria GAAPAAQFSPRL-NH>
Pss-PT Pseudaletia separata KLSYDDKVFENVEFTPRL-NH>»
Hez-NP Helicoverpa zea SLAYDDKSFENVEFTPRL-NH>
Has$-NP Helicoverpa assulta SLAYDDKSFENVEFTPRL-NH»
Agi-B-NP Agrotis ipsilon SLSYEDKMFDNVEFTPRL-NH»
Mab-3-NP Mamestra brassicae SLAYDDKVFENVEFTPRL-NH>
SplB-NP Spodoptera littoralis SLAYDDKVFENVEFTPRL-NH»
Hez«-NP Helicoverpa zea TMNESPRL-NH»
Has=y-NP Helicoverpa assulta TMNFSPRL-NH»
Agi-y-NP Agrotis ipsilon TMNESPRL-NH»
Mab-y-NP Mamestra brassicae TMNFSPRL-NH»
Spl-y-NP Spodoptera littoralis TMNESPRL-NH»
Bom-y-NP Bombyx mori TMSFSPRL-NH»

Bold letters indicate conserved amino acid sequences. DH, diapause hormone; MRCH, melanization and reddish coloration hormone; PBAN, pheromone

biosynthesis activating neuropeptide; PT, pheromonotropin; PK, pyrokinin; MT, myotropin; NP, neuropeptide.

to be part of the PK/PBAN family. Among those are two PK pariation and diapausdg¥6,65,66] and defense (melanin
peptides fromPeriplaneta AmericangPea-PK-5 and Pea- biosynthesis)4,61] in a variety of insects (moths, cock-
PK-6)[70,71] a peptide fronDrosophila melanogastdi 7] roaches, locusts and flies). Currently, over 30 peptides have
and peptides derived from the PBAN gene or cDNA of var- been identified (including pyrokinins, myotropins, PBAN,
ious moths:H. eaz[58], B. mori [50], H. assulta[16], A. melanization and reddish coloration hormone (MRCH), di-
ipsilon [27], M. brassicad47] andS. littoralis [45] (termed apause hormone and pheromonostatin). Studies performed
pheromonotropif andy peptides, with th@ peptide bearing  in several laboratories, including ours, have shown that all of
high homology with Pss-PT). Recently a few additional pep- the above additional functions can be stimulated by more than
tides sharing just the PRL-amide C-terminal sequence wereone peptide, and that the peptides do not exhibit species speci-
added to the PK/PBAN family. Those are not listedable 1 ficity (for a detailed review see &le[32], Rafaeli[74] and
and further information on their origin and sequence can be Rafaeli and Jurenkdy5]). The involvement of PK/PBAN
found in Rafaeli and JurenK&5]. neuropeptides in the above functions was demonstrated by
The PK/PBAN family is a multifunctional family of pep-  means of a variety of in vivo and in vitro bioassays (e.g.,
tides that plays a major role in the physiology of insects. In the above mentioned pheromonotropic bioassay as well as
addition to their ability to stimulate sex pheromone biosyn- melanotropic, egg diapause, pupariation and myotropic as-
thesis in moths, they mediate key functions associated with says) that were developed and optimized in several laborato-
feeding (gut muscle contraction$)3,88], development (pu-  ries[4,33,39,61,65,66,77,88,89,99]
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The discovery of PBAN and the other PK/PBAN peptides, 2.3. The PBAN target organ and receptor
and the availability of the above bioassays led to a burst of
studies on their isolation and identification, gene expression, The target tissue of PBAN has been a disputed issue for
biosynthesis, distribution, release and metabolism as well asmany years. Several morphological, histochemical and bio-
on their modes of action (e.g., route of transport and target chemical studies clearly identified the pheromone gland as
organ, cellular activity and second messenger mediation, ef-the prime target of PBANR28,72,90] These studies demon-
fect on the pheromonal biosynthetic pathways, etc.). In the strated that in vitro gland cultures or preparations of ovipos-
presentreview we summarize three topics which are the focusitor tips from a variety of insects could easily be stimulated
of our studies: (i) the structure—activity relationship (SAR) of to produce sex pheromone by application of brain extracts
the PK/PBAN family, (i) characterization of the PK/PBAN  or of synthetic PBAN. Anatomical evidence provided direct
receptor and (iii) development of a novel strategy for the proof for the existence of PBAN release sites, presumably
generation of PK/PBAN antagonists and their employment in the region of the pheromone glaftb,36,52] and recent
in studying the mode of action of the PK/PBAN peptides. studies demonstrated that viable pheromone gland cell clus-
Additional topics are covered in two comprehensive recent ters from the ISM could produce pheromone in response to
reviews[74,75]and the reader is referred to them for further a pheromonotropic peptidd1].

information. Other studies, however, indicated other organs as alterna-
tive targets. For example, Teal et f3] demonstrated that

2.2. Structure—activity relationship of the PK/PBAN the prime target of PBAN is the terminal abdominal ganglion

family (TAG), which in turn provides a signal that elicits pheromone

production by the pheromone gland. This theory was sup-

Identification of the amino acid sequences of PBAN and ported by the findings of Christensen et HI9,20] who
of other members of the PK/PBAN family enabled to per- demonstrated that in the absence of PBAN, sex pheromone
form detailed SAR studies using synthetic peptides derived production inH. zeaand H. virescensis elicited by the
from their sequences. Studies on a variety of moth speciesbiogenic amine octopamine in an age- and photoperiod-
have shown that the C-terminal region of the neuropeptide dependent manner. These workers suggested that PBAN ac-
is essential for the pheromonotropic activity and that within tivates the TAG that in turn secretes octopamin, which is the
the C-terminal region, the signature pentapeptide (FXPRL- factor that activates the pheromone gland.
amide; X = § T, G or V) represents the minimal sequence The bursa copulatrix has also been suggested as a poten-
required for induction of pheromonotropic activity, although tial target for PBAN. In a study oArgyrothaenia velutinana
in most cases its activity was lower than that of full-length Jurenka et al[49] demonstrated that abdomen cultures re-
PBAN. The amide group and the X position were shown to sponded to a much greater extent than the pheromone gland
be of major importancf-6,54,64,67,80,81] to exogenously applied synthetic PBAN, and that the bursa

The N-terminal part of the molecule was found to be copulatrix was essential for a full stimulatory response to
much lessimportant for the onset of pheromonotropic activity PBAN. The study suggested that a pheromonotropic factor,
[2,53,55,80] By using a variety of Hez-PBAN-derived frag-  otherthan PBAN, originating in the bursa copulatrix, is essen-
ments at a range of doses and at various times post-injectiontial for pheromonotropic activity and that the role of PBAN
we were able to demonstrate, ételiothis peltigera that is to stimulate the release of such a factor. The involvement
peptides lacking 12 and even 16 amino acids from their N- of a bursal factor in the pheromonotropic activity has been
terminus were as potent as the full-length PBAN, and that a reported in other moths as wg6]. Furthermore, in vitro ex-
C-terminal derived hexapeptide that contained the signatureperiments on pheromone glandsTafchoplusia nj Agrotis
sequence (YFSPRL-amide) was capable of stimulating sexsegatumA. velutinanaand the pink bollwormPectinophora
pheromone production to a similar extent to PBAN1-33NH gossypiella failed to show pheromone biosynthesis in re-
when its activity was analyzed at short post-injection times sponse to the application of brain-SEG extracts or synthetic
[3], indicating that the hexapeptide constitutes the biologi- PBAN [73,91,102] All of the above findings indicated that
cally active site of the neuropeptide. PBAN might act on a target other than the pheromone gland.

Structure—function studies were also performed on other One way to gain a better insight into the above issues
insect neuropeptides that contain the PBAN pentapeptideand to resolve some of the above contradictions would be
C-terminal region (PKs, Bom-DH and Pss-PT). All of by a direct demonstration of the presence of PBAN recep-
these peptides showed pheromonotropic activity, and con-tors on the pheromone gland cells. We therefore synthesized
firmed the importance of the C-terminal region in its onset two biotinilated photo-affinity (benzophenon substituted)
[1,30,56,65,89] The ability of a variety of peptides to stim- PBAN ligands: a full-length PBAN1-33Njimolecule and
ulate sex pheromone production hinted at the possible exis-a shorter fragment derived from its C-terminus &g
tence of multiple pheromonotropic mechanisms which may PBAN28-33NH and used them in a histochemical study to
be mediated by multiple PBAN receptors or alternatively, the demonstrate the presence ofthe PBAN receptorin pheromone
existence of only one mechanism mediated by the C-terminal gland cells oH. peltigerafemales and to determine its spatial
part of the PK/PBAN neuropeptides. distribution in the ovipositof12].



M. Altstein / Peptides 25 (2004) 1491-1501 1495

In order to detect PBAN receptor-containing cells among  In parallel, we have developed a binding radio-receptor
the pheromone-producing glandular cells in the ISM and assay[7,10]. We synthesized a radio-ligandH-tyrosyl-
other regions of the ovipositor it was necessary to perform a PBAN28-33NH), developed a method for obtaining an ac-
detailed histological study of the structure of the pheromone tive receptor preparation from the pheromone gland of the
gland ofH. peltigera Although Noctuidae species have been mothH. peltigerg and determined the optimal conditions for
examined more than any other family and considerable in- receptor-ligand binding with respect to membrane prepara-
formation has accumulated concerning the structure of thetion and incubation conditions (e.g., buffers at different pH
cells that form the sex pheromone gland, the extent to which values, divalent ions and protease inhibitors). Once the assay
the ISM is glandular is extremely variable among moths and had been optimized it was used for the characterization of the
there was a need, therefore, to check the actual structure obiological and pharmacological properties of thepeltigera
our specific moth. PBAN receptor in the pheromone gland.

We found that the pheromone gland of thepeltigerafe- Biological characterization involved determination of re-
male is a simple unicellular ring gland, whose glandular cells ceptor expression as a function of days post-emergence, at
encircle the ovipositor and occupy the entire ISM between different hours during photophase and scotophase and in
the eighth and the ninth abdominal segmé¢hg3. Glandular different moth speciesH; peltigerg Helicoverpa armigera
cells were also found in the dorsal and ventral parts of the andS. littoralis). Pharmacological characterization involved
ninth abdominal segment, laterally divided by a sclerotized affinity analysis of various PBAN derived peptides and
cuticular wall. By analogy with findings in othételiothinae analogs. Studies in this part tested the ability of a variety of
specie$68,92], we assume that the cells underneath the scle- peptides derived from the PBAN sequence (PBAN9-33NH
rotized cuticle are unmodified squamous cells or cells modi- PBAN13-33NH, PBAN19-33NH, PBAN26-33NH and
fied for the insertion of muscles. Based on the above it seemsPBAN9-18COOH), linear peptides with antagonistic activ-
that the structure of the pheromone glandHofpeltigerais ity (Arg?’-PBAN 28-336-Phe®®)NH,, seeSection 2.5and
similar to that of the glands of two othkleliothinaespecies: [100]), and backbone cyclic peptidg (BBC 25:n=4,m=
H. zeg that was found to possess ring glands with dorsal and 2; and BBC 27n=4,m=4; for BBC structure please refer to
ventral glandular cells in the ninth segm¢gh#,48,68,82] Fig. 1) to compete with the radio-ligand binding to the recep-
andH. phloxiphaga[48]. tor. PBAN28-33NH and PBAN1-33NH served as reference

When both ligands were used on slide-mounted fixed sec-peptides and AyVasotocin as a control unrelated peptide
tions the columnar epithelial cells throughout the ISM were to demonstrate the binding specificity of the PK/PBAN fam-
stained as well as the ventral and dorsal epithelial cells in theily. We found [10] that peptides PBAN1-33N41 PBAN9-
ninth abdominal segment. Epithelial cells underlying the scle- 33NH,, PBAN19-33NH and PBAN28-33NHdisplaced the
rotized cuticle were not stained. The patterns obtained with radio-ligand at comparable potencies; PBAN26-33N¥hs
both ligands: BpaPBAN1-33NHand BpaArg’-PBAN28- slightly less potent, and PBAN13-33NHvas the weakest
33NH, were similar, indicating two possibilities: either that among the agonistic linear amidated peptides. The displace-
both ligands bind to the same receptor under the tested con-ment curves obtained with PBAN1-33NHnd PBAN28-
ditions or, if there are two distinct receptors, that their spa- 33NH, were identical, with &; value of 3x 10°M [7]. A
tial distribution through out the gland is very similar. The nice correlation was obtained between the binding affinities
staining exhibited a polar pattern, with intense staining ap- of the tested peptides (i.e., PBAN9-33)NHPBAN19-33NH
pearing at the basal part of the epithelial cells. This polarity and PBAN28-33NH) and their bioactivities as indicated by
of the PBAN receptor most likely facilitates efficient contact the in vivo pheromonotropic bioassg;3]. This correlation
with the hemolymph and the blood-borne hormones (e.g., supports the notion that the receptor that was characterized
PBAN) that stimulate sex pheromone production in these in the present study is the putative PBAN receptor. Another
cells. Staining with both ligands was highly specific: no other
cells in the tissue were stained, binding was fully displaced A. Ser BBC library
with an excess of non-biotinilated ligands (PBAN1-33NH

and PBAN28-33NH), and was not displaced with the C- (CH,),— CO-NH—(CHy),

terminal free acid analog PBAN1-33COOH, which is devoid

of pheromonotropic activity3]. A detailed summary of the CO-Arg-Tyr-Phe-Ser-Gly-Arg-Leu-NH,
histochemical study is described by Altstein et[&R]. Our

data clearly demonstrated the presence of a PBAN receptor on 1=2,3,4,6
the pheromone gland, strengthening the notion thatthe gland g 1 p. BBC library m=2.3.4
serves as atarget organ for the neuropeptide. Our dataalsore-—

inforce previous hypotheses, based on morphological criteria, (CH,),— CO-NH—(CH,),

that the columnar cells are pheromone-producing cells, and ‘ ‘

correlate well with the recent data of Raina et[8R] who CO-Arg-Tyr-Phe-D-Phe-Gly-Arg-Leu-NH,

demonstrated that about 70% of the pheromone-producing
cells are located in the ISM. Fig. 1. General structure of backbone cyclic (BBC) peptides.
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peptide that exhibited correlation was PBAN9-18COOH. The
peptide did not displace the ligand up tod®l but stimulated
binding at higher concentrations. A previous examination of
the in vivo pheromonotropic activity of this peptide revealed
synergism with PBAN1-33NLl(Altstein, unpublished). The
only peptide that did not exhibit a good correlation in both
assays was PBAN13-33NHThis peptide exhibited a much
lower affinity toward the receptor in the RRA (as compared
with the other linear agonistic peptides) while its in vivo
pheromonotropic activity was slightly higher than that of
PBAN1-33NH, and PBAN28-33NH. The reason for this
mismatch is not clear at present. Afgasotocin did not dis-
place the ligand, indicating the specificity of the assay to
PBAN-related peptides.

Interestingly, the two antagonistic peptides Afg
PBAN28-330-Pheé®)NH, [100] and BBC peptide 25n(=
4, m= 2)[8] had relatively low displacing activities, despite
of their high antagonistic potency; furthermore, their affinity
did not differ from that of the BBC peptide 2n € 4, m=
4), which is devoid of any agonistic or antagonistic activity.
The data hint at the possibility that these antagonists are no
competitive, i.e., that they do not bind to the same site as
the ligand but exhibit their inhibitory activity by means of
allosteric effects. Thus, in the case of the BBC peptides, itis
probable that both BBC 2% 4, m=2) and BBC 271( =4,
m = 4) bind to the “receptor vicinity”, but that only BBC 25
(n=4,m= 2) has an allosteric effect that may inhibit ligand

binding. A detailed summary of the above results has been

presented by Altstein et dlz,10].

Binding of a photoaffinity ligand to a 50 kDa protein of
a crude membrane preparation of the pheromone gland wa
also demonstrated K. armigera[76] and recently the cDNA
encoding the PBAN receptor bf. zeahas been clone{l8].

The receptor was found to be a G-protein coupled receptor

(GPCR) bearing homology to neuromedin U receptors in ver-
tebrates.

2.4. Generation of receptor-selective PK/PBAN
antagonists

2.4.1. Outline of the general approach
In the past few years, we have worked out an integrated

approach, based in part on rational design, for the devel-
opment of PK/PBAN antagonists based on an agonist. The
approach had to be worked out almost from scratch as no

methodology is available for the conversion of an agonist

to an antagonist and although some vertebrate neuropep
tide antagonists do exist most of them were discovered by

serendipity.
Conversion of an agonist into an antagonist involves:

A. Disclosure of a lead antagonist

B. Optimization of the lead antagonists to generate a more

efficient and highly potent compound

5 (2004) 1491-1501
A.1. Identification of the minimal sequence that forms the
active site of the agonistic neuropeptide

Modification of the active sequence identified in A.1.
Determination of the SAR of the peptides that result
from A.2.

Identification of a linear lead antagonist (among the
modified peptides examined in step A.3.)

A.2.
A.3.

A4,

The rationale behind these steps is based in part on prac-
tices that have been developed in the field of bio-medical
research and in the pharmaceutical industry, where attempts
have been made to convert vertebrate neuropeptide agonists
to antagonists. Many vertebrate neuropeptide antagonists
were discovered by simple modifications of their primary
sequenceR1-24,29,38,43,44,57,59,69,83-87,96,88Dr-
der to minimize the number of possible combinations to be
examined, and hence, the number of peptides to be further
tested for bioactivity, it is necessary to find the shortest pos-
sible active sequence in the native neuropeptide. Once this
minimal active sequence is known, sequential modifications
(mainly based on substitution byPhe orp-Trp) are made
t . . . . .
to it, and the resulting small linear libraries are tested for
bioactivity.

Once a linear lead antagonist has been made available
it is necessary to improve its characteristics further in ac-
cordance with its intended applications, which means, in
our case, to achieve a metabolically stable and receptor-
selective antagonist. Linear peptides cannot serve such
a purpose because of their high susceptibility to prote-
olytic degradation, their low bioavailability and their lack
of selectivity (which results from their high conforma-
Yional flexibility). An effective approach to overcoming
these limitations is through the introduction of conforma-
tional constraint into the linear lead peptides. This leads to
slower equilibrium rate, which reduces the flexibility of the
molecule.

Conformational constraint can be imposed by various
methods (for reviews sef@7,41,42). Cyclization of pep-
tides is one of the commonest and most attractive methods
to introduce conformational constraint into peptides and thus
to restrict their conformational spa¢&l]. The conforma-
tional constraint confers on the peptides: (i) high selectivity,
by restriction of the conformational space to a conforma-
tion which mediates one function of the peptide and excludes
those that mediate other functions; (ii) enhanced metabolic
stability, by excluding the conformations which are recog-
nized by degrading enzymes and thus preventing enzymatic
degradation; (iii) increased biological activity, because of the
much slower equilibrium between the conformations; (iv) im-
proved bioavailability, because of the reduction of polarity.
However, this is only true when the conformational space of
the cyclic peptide overlaps with the bioactive conformation.

Based on the above, conversion of a linear lead antagonist
into a selective, metabolically stable compound involves:

The actual steps in the conversion of an agonistinto aleadB.1. Conversion of the linear peptides to a conformationally

antagonist involves:

constrained molecule
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B.2. Determination of the SAR of the molecules obtained in NHY
B.1.
B.3. Discovery of a conformationally constrained antagonist (CH,),

(on the basis of B.2.)
. . o B ) ) X-Arg-Tyr-Phe-D-Phe-Gly-Arg-Leu-NH,
Once such a molecule is available its bioactivity, bioavail-

ability and stability must be evaluated in vivo. X Y n

Successful application of the above strategy for the de- Ac Ac 2
sign of an optimal antagonist requires fulfillment of several gcc_(CHm_COOH ’;c g
preliminary requirements: OC-(CH,),-COOH  H 6

I. Knowledge of the primary sequence of the target neu-
ropeptide (essential for step A.1. above)

Il. Availability of an advanced chemistry facility for syn-
thesis of linear, and conformationally constrained com- in their bridge sizes and in the position of the amide bond
binatorial libraries (needed for steps A.2. and B.1.) along the bridge Kig. 1). This part of the study was car-

Il. Availability of in vivo or in vitro bioassays for screening  ried out in collaboration with the laboratory of Prof. Gilon at
the libraries and for selection of the most potent com- the Hebrew University of Jerusalem, who had developed the

Fig. 2. General structure of the precyclic peptides.

pounds (essential for steps A.3. and B.2.) BBC methodology and the cycloscan concigat, 35].
IV. Availability of a technology to impose conformational Screening of the two sub-libraries for pheromonotropic
constraint on peptides (required for step B.1.) antagonists revealed that all the antagonistic peptides orig-
inated from thepn-Phe sub-library and led to the discov-
2.5. Implementation of the strategy for the PK/PBAN ery of four compounds that fully inhibited (at 1 nmol) sex
family pheromone biosynthesis (evoked by 1 pmol PBAN1-33NH

and were devoid of agonistic activity (BBC 20, 22, 25 and

In the past few years we have implemented the above28;n+m=2+3; 3+ 2; 4 + 2; 6 + 2respectively, sekig. 1).
strategy to the PK/PBAN family. The first stage involved Substitution of the>-Phe amino acid with a Ser resulted in a
optimization of the in vivo pheromonotropic bioassay (us- loss of antagonistic activit{8,101]. Four precyclic peptides
ing femaleH. peltigeramoths) for evaluation of agonistic  (Fig. 2), based on two of the BBC antagonists (BBC 20 and
and/or antagonistic activities of linear and conformationally BBC 28;n+ m= 2 + 3; 6 + 2;respectively), were also syn-
constrained peptidel8,33]. Once the assay was available thesized; their activity revealed that a negative charge at the
we synthesized a variety of linear peptides derived from the N-terminus of the peptide eliminated the antagonistic activity
sequence of Hez-PBAN1-33NHand identified (by SAR  [101]. Assessment of the metabolic stability of the BBC pep-
studies) the minimal active sequence of PBAN (YFSPRL- tidesindicated that they were very stable compared with their
amide) that constitutes the active core of the PK/PBAN fam- linear parent moleculd8,11]. To the best of our knowledge
ily [2,3,5,6] Based on the hexapeptide’s active sequence, athese compounds are the only known PBAN antagonists.
“biased library” of linear peptides was synthesized, in which Evaluation of the ability of the BBC peptides to inhibit sex
each amino acid was sequentially substituted with the amino pheromone biosynthesis that was elicited by endogenous fac-
acidp-Phe. The peptides in the library were tested for their tors, i.e., by the natural peptides, revealed four antagonistic
agonistic and antagonistic pheromonotropic activity (using highly potent BBC peptides (BBC 20, 23,25 and28;m=2
the full-length Hez-PBAN1-33Nb) as a stimulator, and a + 3;3 + 3; 4 + 2; 6 + 2respectively, seEig. 1), that inhibited
highly potent antagonist (RYFdFPRL-amide), capable of in- sex pheromone biosynthesis by 68, 57, 54 and 70%, respec-
hibiting sex pheromone biosynthesis by 80% (at 100 pmol) tively, for 5h post-injection, when applied at 1 nn{ai3].
was discovered,100] Further examination of the time response of the most potent

The sequence of the parent agonist and of the lead an-antagonist (BBC 28+ m= 6 + 2)indicated that significant
tagonist were used as a basis for the design of two confor-inhibition of sex pheromone production k. peltigerafe-
mationally constrained chemical libraries. Conformational males could last up to 11 h post-injectifd3], indicating the
constraint was imposed on the molecules by backbone cy-high potency and metabolic stability of this antagonist. De-
clization[34,51] Two backbone cyclic (BBC) libraries were  spite the high and long-lasting potency of the BBC peptides,
designed8]. The first (termed the Ser sub-library) was based sex pheromone biosynthesis was not fully inhibited, suggest-
on a slight modification of the C-terminal hexapeptide se- ing that the endogenous mechanism of sex pheromone pro-
quence (RYFSPRL-amide) of PBAN1-33MHwhich was duction may be either mediated by more than one receptor,
found to be the PBAN active core. The second (termed the or controlled by more than one neuropeptide or by more than
D-Phe sub-library) was based on the sequence of the lead anene mechanism all of which are not affected by the above
tagonist: RYFdFPRL-amide. All the cyclic peptides in each antagonists.
sub-library had the same primary sequence and the same lo- The availability of linear, BBC and precyclic peptides,
cation of the ring. The members of each sub-library differed and of the information on their pheromonotropic agonistic
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and antagonistic properties under conditions in which sex species specificity, receptor heterogeneity and functional
pheromone biosynthesis was induced by the full-length diversity.
PBAN1-33NH, enabled us to move toward the further char- The information that has already been accumulated and
acterization of the pheromonotropic antagonistic proper- the tools (e.g., bioassays, in vitro binding assays, receptor-
ties of the above compound under conditions in which sex selective agonists and antagonists, cloned genes, etc.,) thatare
pheromone biosynthesis is elicited by other PK/PBAN pep- currently available to us carry a high potential for further ex-
tides. Three peptides of the PK/PBAN family: Pss-PT, Lem- ploration of the above issue. Receptors are most significantin
PK (LPK, seeTable ) and Lom-MT-1l (MT, seeTable J the understanding of the biological function of any neuropep-
and the PBAN derived peptide PBAN28-33bMere used tide (especially in families where several peptides exhibit
as stimulators. This part of the study was carried out in col- similar bio-activities) and central in providing information
laboration with the laboratory of Dr. Ronald J. Nachman at on the direct correlation between the activity of a given neu-
the US Department of Agriculture, College Station, TXUSA. ropeptide and its target. Antagonists, especially those that are
The data revealed that none of the tested compounds exhibreceptor-selective (like the BBC peptides described above)
ited significant inhibitory activity (greater than 50%) toward provide excellent research tools for studying multi-peptide
any ofthe stimulating peptides (Altstein etal., in preparation). families that exhibit functional diversity. We anticipate that
The only peptide that was slightly inhibited by two BBC pep- the availability of conformationally constrained antagonists,
tides and a precyclic peptide was LPK, but even thisinhibition the high affinity ligands that were developed in our as well
was much lower that that obtained with PBAN1-33NHhe in other laboratories, the cloned receptor and the binding as-
above results hint at the possibility that PBAN1-33N#terts says that were worked out together with the in vivo bioassays
its activity via a mechanism other than that used by Pss-PT, provide a solid basis for further studies aiming at getting a
LPK, MT and PBAN28-33NH. Such differences may result  better insight into the mode of action of PBAN and the other
either from the presence of different receptors (or receptor pheromonotropic peptides in moths. Beyond the high scien-
sub-types) for the different peptides on the pheromone gland,tific value of the above findings the strategies and approaches
orfrom differences inthe modes of binding of the various pep- that were developed in the course of the PBAN research bear
tides to the receptor’s active site, namely, in a manner that isalso a high potential for practical application by providing a
not affected by the inhibitor. The later possibility can be con- basis for generation of insect neuropeptide antagonist based
sidered only if the inhibitory compounds are non-competitive insect control agents. This approach is currently being ap-
and cause inhibition through steric hindrance, which affects plied in our laboratory using the PK/PBAN peptides as a basis
one ligand (PBAN1-33Nb) but not the others (Pss-PT, MT  for insect control agent rational design. A detailed descrip-
and LPK). Confirmation of the non-competitive inhibitory tion of the approach has recently been described by Altstein
nature of the BBC compounds was found in our receptor [11,13]
binding studies described abdi®]. The reason for the dif-
ferent binding modes of each peptide can be explained on
the basis of their size differences. PBAN1-33Nikla much Acknowledgements
larger peptide (33 amino acids) than the other members of
the family, so it may occupy a much larger space at the ac- This research was supported by the Israel Ministry of
tive site than the other peptides, and may thus be much moreScience and Technology, by the Israel Science Founda-
affected than the smaller peptides by steric hindrance causedion administered by the Israel Academy of Sciences and
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